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1. Introduction. Let C, be the configura-
tion space of planar polygons with n vertices, each
edge having length 1 in R?;

Cr = {(u1,...,un) | |uig1 —u| =1 (1 <i<n-1),

luy —up,| =1} C (RH)™.

Note that Iso(R?), the isometry group of R?, natu-
rally acts on C,. We define

M,, = C,/Iso" (R?)
M, = C,/Tso(R?)

where Isot(R?) is the orientation preserving isome-
try group. Identifying R? with C, we can write M,
as

Mn:{(zl7"'7zn—1)‘Zl‘i’...‘i’zn_lflzo}

C (Sl)n—l

and M) = M, /o where o is the complex conjuga-
tion. Note that the action of ¢ on M,, is free if n is
odd and has fixed points if n is even.

For n < 5, the explicit topological type of M,
is known ([1], [2], [4], and [8]).

It is known that Ms,,+1 is a smooth manifold,
while My, is a manifold with singular points ([5],
[7], and [9]).

The purpose of this paper is to study the fun-
damental group of My, and M}, .

In [7], Y. Kamiyama and M. Tezuka showed by
the Morse theory that if n is odd, the inclusion

ip: M, — (S1)" 1

is a homotopy equivalence up to certain dimension.
Theorem 1.1 ([7]).

(i2m1)s: Tq(Mam1) = 7 ((S1)™)

is an isomorphism for ¢ < m — 2.

T.Hinokuma and H.Shiga showed the corre-
sponding result for even n using the other Morse
function ([3]). We give the alternative proof based
on the method of 7] and show the following,.

Theorem 1.2.
(i2m)w: g (Mam) = mg((S1)*™ 1)

is an isomorphism for ¢ < m — 2.

Remark 1.3. In [3], much more information
about the topology of M, is obtained.

In particular we have the following.

Corollary 1.4. w1 (Ma,y,) is abelian for m > 3.

The topology of M) is studied in [6] and he de-
termined the fundamental group of Mj,, ., as well
as almost all the homology groups of M.

We determine the fundamental group of M}, .

Theorem 1.5. Form >3

Wl(Mém) = Z/Q-

2. Outline of the proof of Theorem 1.2.
Following [7], we consider the function

gom—1- (Sl)2m_1 — R

defined by gam—1(21,- -+, 22m-1) = |z21+. . . F22m-1—
1|2, Note that g5+ _;(0) = Moy, is a “critical singular
submanifold”.

Proposition 2.1 ([7]).

(217 ey ngfl) S (Sl)2m_1 — M2m

is a critical point of gom—_1 if and only if z; =
+1(1 < i < 2m —1). Moreover such points are
non-degenerate with index greater than or equal to
m.

Proposition 2.2. There exist 0 < € < 2 and
a retraction 7: gy, 1 ([0,€]) — Map,.

Combining these propositions, we see that
(i2m )i Tq(Map ) — mg((S1)?™~1) is injective for ¢ <
m — 2. By [7], we know that (igm)«: H1(Mam; Z) —
Hy((SY)?™~1;, Z) is an isomorphism, which complete
the proof.

3. Outline of the proof of Theorem 1.5.
We set

En,1 = {(Zl,. . .,anl) ‘ 2 = :tl} C (Sl)n71

E}L—lz{(zh ) Zn—1)|Zi = =1, Zzl = 1}C2n—1



No. 6]

272171:{(217 e 7Zn71)|zi = ilvzzz # l}CEn,l.

Note that ¥,,_1 is the fixed point set of the action of
o, the complex conjugation, on (S1)"~! and X1 | =
Yn-1 N M,. We define V,,_; and V,_; by

Vn,1 = (Sl)n_l - anl/(f
Vo =St =32 /o

respectively. Then we have the following map of cov-
ering spaces.

Z/2 Z/2

l |

M,-%! | —— (SHYnl-x%,

n—

! !

Mn—zi_l/()’ E— V1.

Let i',: M! — V' | be the inclusion. Since X3, =0
and Vs, = V3., we have the following ([6]).
Theorem 3.1 ([6]).

(i/2m+1)*: ﬂ—q(Mém+1) — ’n—q(‘/Zlm)

are isomorphisms for ¢ < m—2 and an epimorphism
forqg=m —1.

For even n, we have the following.

Lemma 3.2. The inclusion induces an iso-
morphism of fundamental group w1 (Mo, —33,, 1) =
1 (Vam—1) for m > 4.

By Van Kampen Theorem and diagram chasing
with a little more work for m = 3, we have the fol-
lowing lemmas which complete the proof of Theorem
1.5.
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Lemma 3.3.
(Z/Zm)* 7-rl(‘2\42/m) — 7T1(Vv2lm71)

is an isomorphism for m > 3.
Lemma 3.4. m(Vy,,_1) =2Z/2.
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