On the units and the class numbers of certain composita of two quadratic fields

By Shin-ichi KATAYAMA,^{*)} Claude LEVESQUE,^{**)} and Toru NAKAHARA^{***)}

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1999)

1. Preliminaries. Let k_1 be a real quadratic field and $\varepsilon_1 (> 1)$ be the fundamental unit of k_1 . We shall fix a unit $\eta_1 = \varepsilon_1^{2i+1}$, which is an odd power of the fundamental unit ε_1 with $i \ge 0$. Then there exists some positive integer M such that η_1 is written in the form

$$\eta_1 = \frac{M + \sqrt{M^2 \pm 4}}{2}$$

Let $\bar{\eta}_1$ be the field conjugate of η_1 . Put $D = M^2 \pm 4$. Then D is not necessarily square-free, and we denote the square-free part of D by D_0 . When we use the notation $\pm y$ or $\mp z$, $\pm y$ and -z correspond to the upper case $D = M^2 \pm 4$, which will be called the *plus case*, and -y and $\pm z$ correspond to the lower case $D = M^2 - 4$, which will be called the *minus case*.

Put

$$g_n = \eta_1^n + \bar{\eta}_1^n, \qquad h_n = \frac{\eta_1^n - \bar{\eta}_1^n}{\sqrt{D}}.$$

Then the sequences $\{g_n\}_{n \in \mathbb{N}}$ and $\{h_n\}_{n \in \mathbb{N}}$ are the non-degenerated second order linear recurrence sequences defined by

$$g_{n+2} = Mg_{n+1} \pm g_n, \quad h_{n+2} = Mh_{n+1} \pm h_n,$$

with the initial terms $g_0 = 2$, $g_1 = M$ and $h_0 = 0$, $h_1 = 1$.

The purpose of this note is to report our results on the class number h_K and the unit group E_K of the biquadratic field $K = \mathbf{Q}(\sqrt{D}, \sqrt{h_{2n+1}^2 - 1})$: see Theorems 1 and 2. Only sketches of proofs will be provided and details will be published elsewhere.

For any $a, b \in \mathbb{Z} \setminus \{0\}$, we put $a \sim b$ if and only if ab is a perfect square. So

$$\begin{pmatrix} a_1\\b_1 \end{pmatrix} \sim \begin{pmatrix} a_2\\b_2 \end{pmatrix} \iff a_1 \sim a_2 \text{ and } b_1 \sim b_2.$$

Moreover, $M^2 - D = \mp 4$ and $g_{2n+1}^2 - Dh_{2n+1}^2 = \mp 4$ imply

$$g_{2n+1}^2 - M^2 = D(h_{2n+1}^2 - 1).$$

Then we shall verify that $h_{2n+1}^2 - 1 \not\sim 1$ and $h_{2n+1}^2 - 1 \not\sim D$ except for finitely many indices n. So except for finitely many indices n, we will construct a family of real bicyclic biquadratic fields

$$K = \mathbf{Q}\left(\sqrt{D}, \sqrt{h_{2n+1}^2 - 1}\right) \quad (n \ge 1).$$

Then K has three subfields:

$$k_1 = \mathbf{Q}\left(\sqrt{D}\right), \quad k_2 = \mathbf{Q}\left(\sqrt{h_{2n+1}^2 - 1}\right),$$

 $k_3 = \mathbf{Q}\left(\sqrt{g_{2n+1}^2 - M^2}\right).$

We have a unit η_2 in k_2 defined by

$$\eta_2 = h_{2n+1} + \sqrt{h_{2n+1}^2 - 1},$$

and we will denote by ε_2 the fundamental unit of k_2 .

Concerning the recurrence sequence $\{g_n\}_{n \in \mathbb{N}}$, one can verify $M|g_{2n+1}$ by induction. So we also have a unit η_3 in $k_3 = \mathbf{Q}(\sqrt{(g_{2n+1}/M)^2 - 1})$, namely

$$\eta_3 = g_{2n+1}/M + \sqrt{(g_{2n+1}/M)^2 - 1}$$

and we will denote by ε_3 the fundamental unit of k_3 .

Let E be the group $\langle -1, \varepsilon_1, \varepsilon_2, \varepsilon_3 \rangle$. Then the group index $[E_K : E]$ is called the unit index of K and is known to be 1, 2 or 4 in general. Let us quote a result of Shorey-Stewart [14].

Lemma 1. Let d be an integer > 1. Then there exists a constant C_1 , which is effectively computable in terms of M and d such that for any $n \ge C_1$,

$$g_n \not\sim d$$
 and $h_n \not\sim d$.

Let us list several properties of the above two linear recurrences $\{g_n\}_{n \in \mathbb{N}}$ and $\{h_n\}_{n \in \mathbb{N}}$.

Proposition 1. For any index $n \ge 0$,

- (i) $h_{2n+1} + (\mp 1)^n = g_n h_{n+1},$
- (ii) $h_{2n+1} (\mp 1)^n = g_{n+1}h_n$,
- (iii) $g_{2n+1} + (\mp 1)^n M = g_n g_{n+1},$

^{*)} Department of Mathematical Sciences, Tokushima University, 1-1 Minamijosanjima-cho, Tokushima 770–8502.

^{**)} Département de Mathématiques et de Statistique, Université Laval, Canada.

^{***)} Department of Mathematics, Saga University, 1 Honjo-cho, Saga 840–8502.

(iv) $g_{2n+1} - (\mp 1)^n M = (M^2 \pm 4)h_n h_{n+1},$

(v) $(h_n, h_{n+1}) = 1$ and $(g_n, g_{n+1}) = (M, 2)$,

(ix) $(g_n, MD) = \begin{cases} (2, M) & \text{if } n \text{ is even,} \\ M & \text{if } n \text{ is odd.} \end{cases}$

Using the above lemma and proposition, we obtain the following theorem.

Theorem 1. There exists a computable constant N_0 such that for all $n \ge N_0$, $\{\varepsilon_1, \varepsilon_2, \varepsilon_3\}$ is a fundamental system of units of K and $N\varepsilon_2 = N\varepsilon_3 =$ +1. Moreover, the class number h_K of K verifies the identity

$$h_K = \frac{1}{4} h_{k_1} h_{k_2} h_{k_3},$$

where h_{k_i} is the class number of the quadratic subfield k_i $(1 \le i \le 3)$.

Sketch of the proof. Let us note that

$$\sqrt{\frac{x + \sqrt{x^2 - r^2}}{r}} = \frac{x + r + \sqrt{x^2 - r^2}}{\sqrt{2r(x + r)}}.$$

Step 1. One can easily show

 $[K:\mathbf{Q}] = 4 \iff h_{2n+1}^2 - 1 \not\sim 1 \text{ and } h_{2n+1}^2 - 1 \not\sim D.$

Since $h_{2n+1}^2 - 1 = h_{2n}h_{2n+2}$ with $(h_{2n}, h_{2n+2}) = M$, one sees that

$$h_{2n+1}^2 - 1 \sim 1 \iff \begin{pmatrix} h_{2n} \\ h_{2n+2} \end{pmatrix} \sim \begin{pmatrix} M \\ M \end{pmatrix}$$

and

$$h_{2n+1}^2 - 1 \sim D \iff \begin{pmatrix} h_{2n} \\ h_{2n+2} \end{pmatrix} \sim \begin{pmatrix} d_1 M \\ d_2 M \end{pmatrix},$$

where $d_1d_2 = D_0$ with $(d_1, d_2) = 1$. From Lemma 1, one can easily verify that there exists a computable constant N_1 such that for $n \ge N_1$, $[K : \mathbf{Q}] = 4$.

Step 2. One can see

$$\eta_2 \in \langle \varepsilon_2^2 \rangle \iff h_{2n+1} + 1 \sim 2 \text{ or } h_{2n+1} - 1 \sim 2.$$

Then the above last conditions can be reduced to one of the following conditions:

$$\begin{pmatrix} g_n \\ h_{n+1} \end{pmatrix} \sim \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} M \\ 2M \end{pmatrix} \text{ or } \begin{pmatrix} 2M \\ M \end{pmatrix},$$

$$\begin{pmatrix} g_{n+1} \\ h_n \end{pmatrix} \sim \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} M \\ 2M \end{pmatrix} \text{ or } \begin{pmatrix} 2M \\ M \end{pmatrix}.$$

From Lemma 1, there exists a computable constant $N_2 \geq N_1$ such that for $n \geq N_2$, $\eta_2 \notin \langle \varepsilon_2^2 \rangle$. Similarly there exists a computable constant $N_3 \geq N_2$ such that for $n \geq N_3$, $\eta_3 \notin \langle \varepsilon_3^2 \rangle$.

Step 3. Let $n \ge N_3$. Then in the minus case one sees that

$$\sqrt{\varepsilon_1} \in E_K \iff \sqrt{\eta_1} \in E_K$$
$$\iff M + 2 \sim h_{2n+1}^2 - 1 \text{ or}$$
$$M - 2 \sim h_{2n+1}^2 - 1.$$

It is obvious that $\sqrt{\varepsilon_1} \notin E_K$ in the plus case. So in the same way as in Step 1, we can show that there exists a computable constant $N_4 \ge N_3$ such that for $n \ge N_4$, $\sqrt{\varepsilon_1} \notin E_K$. In the same way as above, one can see that there exists an effectively computable constant $N_0 \ge N_4$ such that, for $n \ge N_0$, $\sqrt{\varepsilon_2} \notin E_K$ and $\sqrt{\varepsilon_3} \notin E_K$ and $\sqrt{\varepsilon_1 \varepsilon_2} \notin E_K$ and $\sqrt{\varepsilon_2 \varepsilon_3} \notin E_K$ and $\sqrt{\varepsilon_1 \varepsilon_3} \notin E_K$ and $\sqrt{\varepsilon_1 \varepsilon_2 \varepsilon_3} \notin E_K$. In short, $E_K =$ E for $n \ge N_0$.

2. The case of an odd integer M. In this section, we shall restrict ourselves to the case where M is odd, i.e. $D = M^2 \pm 4$ is odd. We will see that the constant N_0 in Theorem 1 can be taken to be 7; we will also exhibit fundamental systems of units for $1 \le n \le 6$. First we quote the following results of Cohn [3, 4] and Ribenboim–MacDaniel [12].

Lemma 2. If M = 1 in the plus case and r > 0, then

$$g_r \sim M \iff r = 1 \text{ or } 3$$

 $g_r \sim 2M \iff r = 6.$

If M = 3 in the plus case and r > 0, then $g_r \not\sim 2$, $g_r \not\sim 2M$, and

$$g_r \sim 1 \iff r = 3,$$

$$g_r \sim M \iff r = 1.$$

If M = 3 in the minus case and r > 0, then $g_r \not\sim 1$, $g_r \not\sim 2M$, and

$$\begin{array}{l} g_r \sim 2 & \Longleftrightarrow r = 3, \\ g_r \sim M & \Longleftrightarrow r = 1. \end{array}$$

If M = 5 in the plus case and r > 0, then $g_r \not\sim 1$, $g_r \not\sim 2M$, and

$$g_r \sim 2 \iff r = 6,$$

 $g_r \sim M \iff r = 1.$

If M = 27 in the minus case and r > 0, then $g_r \not\sim 1$, $g_r \not\sim 2M$, and

$$g_r \sim M \iff r = 1,$$

$$g_r \sim 2 \iff r = 3.$$

64

Elsewhere $g_r \not\sim 2$, $g_r \not\sim 2M$, and

$$\begin{array}{l} g_r \sim 1 & \Longleftrightarrow r = 1 \ (and \ M \sim 1), \\ g_r \sim M & \Longleftrightarrow r = 1. \end{array}$$

Using this lemma, one can get the following result.

Theorem 2. Let M (and $D = M^2 \pm 4$) be odd. Then the unit group E_K of K is given by

$$E_{K} = \begin{cases} \langle -1, \varepsilon_{1}, \sqrt{\varepsilon_{2}}, \varepsilon_{3} \rangle \\ if n = 5 \text{ with } M = 1 \text{ in the plus case,} \\ \langle -1, \varepsilon_{1}, \varepsilon_{2}, \sqrt{\varepsilon_{3}} \rangle \\ if n = 2 \text{ with } M \text{ such that } M^{2} = 2x^{2} \mp 1, \\ \langle -1, \varepsilon_{1}, \varepsilon_{2}, \sqrt{\varepsilon_{2}\varepsilon_{3}} \rangle \\ if \begin{cases} n = 1 \text{ for any } M, \\ n = 6 \text{ with } M = 1 \text{ in the plus case,} \\ \langle -1, \varepsilon_{1}, \varepsilon_{2}, \sqrt{\varepsilon_{1}\varepsilon_{3}} \rangle \\ if n = 2 \text{ with } M = 5 \text{ in the minus case,} \\ \langle -1, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3} \rangle \\ otherwise. \end{cases}$$

The fact $\sqrt{\varepsilon_1\varepsilon_3} \notin E_K$ except for n = 2 with M = 5 in the minus case can be shown in the following way. First we see

$$\sqrt{\varepsilon_1 \varepsilon_3} \in E_K$$

$$\iff \begin{cases} g_n g_{n+1} \sim 2M(M+2) \text{ or } 2M(M-2) \\ \text{ or } \\ h_n h_{n+1} \sim 2M(M+2) \text{ or } 2M(M-2). \end{cases}$$

By Lemma 2, one sees that the possible index n = 2 and M must satisfy the conditions $M + 1 \sim 6$, and $M - 1 \sim 1$ and $M - 2 \sim 3$. Put $M - 1 = x^2$, $M - 2 = 3y^2$ and $M + 1 = 6z^2$. Then the existence of such an integer M is equivalent to the existence of integer solutions of the following simultaneous Fermat-Pell equations

$$\begin{cases} x^2 - 3y^2 = 1, \\ y^2 - 2z^2 = -1 \end{cases}$$

Let us rather consider the following equivalent equations

(1) $\begin{cases} x^2 - 3y^2 = 1, \\ w^2 - 2y^2 = 2, \end{cases}$

where w = 2z. With the help of a result of Rickert (see (1.7) in [13]), we will show that these equations have only one positive integer solution: (x, y, w) = (2, 1, 2).

Lemma 3 (Rickert). Let u, v be non-zero integers. All integer solutions x, y, z of the following simultaneous Fermat-Pell equations

$$\begin{cases} x^2 - 3y^2 = i \\ z^2 - 2y^2 = i \end{cases}$$

r

$$\max\{|x|, |y|, |z|\} \le (10^7 \max\{|u|, |v|\})^{12}.$$

Then to find the positive integer solutions of (1) is equivalent to finding all non-negative integers m, n for which

$$\begin{cases} x = r_n = ((2+\sqrt{3})^n + (2-\sqrt{3})^n)/2, \\ y = s_n = ((2+\sqrt{3})^n - (2-\sqrt{3})^n)/(2\sqrt{3}), \\ y = p_m = ((1+\sqrt{2})^{2m+1} + (1-\sqrt{2})^{2m+1})/2, \\ w = q_m = ((1+\sqrt{2})^{2m+1} - (1-\sqrt{2})^{2m+1})/\sqrt{2}. \end{cases}$$

From Lemma 3, we see that $(1 + \sqrt{2})^{2m} < p_m \leq (10^7 \times 2)^{12}$ for $m \geq 1$ implies $m < (42 \log(10) + 6 \log(2))/\log(1 + \sqrt{2}) = 114.443 \cdots < 115$. We have checked that for $0 \leq m \leq 114$, $p_m = s_n$ only for m = 0, n = 1, i.e., the simultaneous Fermat-Pell equations (1) have only the positive integer solution (x, y, w) = (2, 1, 2).

Acknowledgement. We would like to express our warmest thanks to Prof. I. Wakabayashi, who suggested us to use Rickert's result to simplify our first proof for solving the above Fermat-Pell equations.

References

- [1] A. Baker and H. Davenport: The equations $3x^2 2 = y^2$, and $8x^2 7 = z^2$. Quart. J. Math. Oxford, (2), **20**, 127–137 (1969).
- [2] R. T. Bumby: The diophantine equation $3x^4 2y^2 = 1$. Math. Scand., **21**, 144–148 (1967).
- [3] J. H. E. Cohn: Eight diophantine equation. Proc. London Math. Soc., 16, 153–166 (1966).
- [4] J. H. E. Cohn: Squares in some recurrent sequences. Pacific J. Math., 41, 631–646 (1972).
- [5] S. Katayama and S.-G. Katayama: Fibonacci, Lucas and Pell numbers and class numbers of bicyclic biquadratic. Math. Japon., 42, 121–126 (1995).
- [6] C. Levesque: Systèmes fondamentaux d'unités de certains corps de degré 4 et de degré 8 sur Q. Canad. J. Math., XXXIV, nr. 5, 1059–1090 (1982).
- [7] W. Ljunggren: Einige Eigenschaften der Einheiten reeller quadratischer und reinbiquadratischer Zahlkörper. Oslo Vid. Akad. Strifter, 1, nr. 12 (1936).
- [8] K. Nakamula and A. Pethő: Squares in binary recurrence sequences (preprint).

65

No. 4]

- [9] A. Pethő: Perfect powers in second order linear recurrences. J. Number Theory, 15, 5–13 (1982).
- [10] A. Pethő: Full cubes in the Fibonacci sequence.
 Publ. Math. Debrecen, **30**, 1–2, 117–127 (1983).
- [11] P. Ribenboim: The Book of Prime Number Records, 2nd ed., Springer-Verlag, New York (1989).
- [12] P. Ribenboim and W. L. McDaniel: The square terms in Lucas sequences. J. Number Theory, 58,

104-123 (1996).

- [13] J. H. Rickert: Simultaneous rational approximations and related Diophantine equations. Math. Proc. Cambridge Philos. Soc., **113**, 461–472 (1993).
- [14] T. N. Shorey and C. L. Stewart: On the diophantine equation $ax^{2t} + bx^ty + cy^2 = d$ and pure powers in recurrences. Math. Scand., **52**, 24–36 (1983).