On the units and the class numbers of certain composita of two quadratic fields

By Shin-ichi Katayama, ${ }^{*)}$ Claude Levesque, ${ }^{* *)}$ and Toru Nakahara***)
(Communicated by Shokichi Iyanaga, m. J. A., April 12, 1999)

1. Preliminaries. Let k_{1} be a real quadratic field and $\varepsilon_{1}(>1)$ be the fundamental unit of k_{1}. We shall fix a unit $\eta_{1}=\varepsilon_{1}^{2 i+1}$, which is an odd power of the fundamental unit ε_{1} with $i \geq 0$. Then there exists some positive integer M such that η_{1} is written in the form

$$
\eta_{1}=\frac{M+\sqrt{M^{2} \pm 4}}{2}
$$

Let $\bar{\eta}_{1}$ be the field conjugate of η_{1}. Put $D=M^{2} \pm 4$. Then D is not necessarily square-free, and we denote the square-free part of D by D_{0}. When we use the notation $\pm y$ or $\mp z,+y$ and $-z$ correspond to the upper case $D=M^{2}+4$, which will be called the plus case, and $-y$ and $+z$ correspond to the lower case $D=M^{2}-4$, which will be called the minus case.

Put

$$
g_{n}=\eta_{1}^{n}+\bar{\eta}_{1}^{n}, \quad h_{n}=\frac{\eta_{1}^{n}-\bar{\eta}_{1}^{n}}{\sqrt{D}}
$$

Then the sequences $\left\{g_{n}\right\}_{n \in \mathbf{N}}$ and $\left\{h_{n}\right\}_{n \in \mathbf{N}}$ are the non-degenerated second order linear recurrence sequences defined by

$$
g_{n+2}=M g_{n+1} \pm g_{n}, \quad h_{n+2}=M h_{n+1} \pm h_{n}
$$

with the initial terms $g_{0}=2, g_{1}=M$ and $h_{0}=0$, $h_{1}=1$.

The purpose of this note is to report our results on the class number h_{K} and the unit group E_{K} of the biquadratic field $K=\mathbf{Q}\left(\sqrt{D}, \sqrt{h_{2 n+1}^{2}-1}\right)$: see Theorems 1 and 2. Only sketches of proofs will be provided and details will be published elsewhere.

For any $a, b \in \mathbf{Z} \backslash\{0\}$, we put $a \sim b$ if and only if $a b$ is a perfect square. So

$$
\binom{a_{1}}{b_{1}} \sim\binom{a_{2}}{b_{2}} \Longleftrightarrow a_{1} \sim a_{2} \text { and } b_{1} \sim b_{2}
$$

[^0]Moreover, $M^{2}-D=\mp 4$ and $g_{2 n+1}^{2}-D h_{2 n+1}^{2}=\mp 4$ imply

$$
g_{2 n+1}^{2}-M^{2}=D\left(h_{2 n+1}^{2}-1\right)
$$

Then we shall verify that $h_{2 n+1}^{2}-1 \nsim 1$ and $h_{2 n+1}^{2}-1 \nsim D$ except for finitely many indices n. So except for finitely many indices n, we will construct a family of real bicyclic biquadratic fields

$$
K=\mathbf{Q}\left(\sqrt{D}, \sqrt{h_{2 n+1}^{2}-1}\right) \quad(n \geq 1)
$$

Then K has three subfields:

$$
\begin{gathered}
k_{1}=\mathbf{Q}(\sqrt{D}), \quad k_{2}=\mathbf{Q}\left(\sqrt{h_{2 n+1}^{2}-1}\right) \\
k_{3}=\mathbf{Q}\left(\sqrt{g_{2 n+1}^{2}-M^{2}}\right)
\end{gathered}
$$

We have a unit η_{2} in k_{2} defined by

$$
\eta_{2}=h_{2 n+1}+\sqrt{h_{2 n+1}^{2}-1}
$$

and we will denote by ε_{2} the fundamental unit of k_{2}.
Concerning the recurrence sequence $\left\{g_{n}\right\}_{n \in \mathbf{N}}$, one can verify $M \mid g_{2 n+1}$ by induction. So we also have a unit η_{3} in $k_{3}=\mathbf{Q}\left(\sqrt{\left(g_{2 n+1} / M\right)^{2}-1}\right)$, namely

$$
\eta_{3}=g_{2 n+1} / M+\sqrt{\left(g_{2 n+1} / M\right)^{2}-1}
$$

and we will denote by ε_{3} the fundamental unit of k_{3}.
Let E be the group $\left\langle-1, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\rangle$. Then the group index $\left[E_{K}: E\right]$ is called the unit index of K and is known to be 1,2 or 4 in general. Let us quote a result of Shorey-Stewart [14].

Lemma 1. Let d be an integer >1. Then there exists a constant C_{1}, which is effectively computable in terms of M and d such that for any $n \geq C_{1}$,

$$
g_{n} \nsucc d \text { and } h_{n} \nsim d .
$$

Let us list several properties of the above two linear recurrences $\left\{g_{n}\right\}_{n \in \mathbf{N}}$ and $\left\{h_{n}\right\}_{n \in \mathbf{N}}$.

Proposition 1. For any index $n \geq 0$,
(i) $h_{2 n+1}+(\mp 1)^{n}=g_{n} h_{n+1}$,
(ii) $h_{2 n+1}-(\mp 1)^{n}=g_{n+1} h_{n}$,
(iii) $g_{2 n+1}+(\mp 1)^{n} M=g_{n} g_{n+1}$,
(iv) $g_{2 n+1}-(\mp 1)^{n} M=\left(M^{2} \pm 4\right) h_{n} h_{n+1}$,
(v) $\left(h_{n}, h_{n+1}\right)=1$ and $\left(g_{n}, g_{n+1}\right)=(M, 2)$,
(vi) $h_{n+2} \pm h_{n}=g_{n+1}$,
(vii) $\left(g_{n}, h_{n+1}\right)= \begin{cases}1 & \text { if } n \text { is even, } \\ M & \text { if } n \text { is odd, }\end{cases}$
(viii) $\left(g_{n+1}, h_{n}\right)= \begin{cases}M & \text { if } n \text { is even, } \\ 1 & \text { if } n \text { is odd, }\end{cases}$
(ix) $\quad\left(g_{n}, M D\right)= \begin{cases}(2, M) & \text { if } n \text { is even, } \\ M & \text { if } n \text { is odd. }\end{cases}$

Using the above lemma and proposition, we obtain the following theorem.

Theorem 1. There exists a computable constant N_{0} such that for all $n \geq N_{0},\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\}$ is a fundamental system of units of K and $N \varepsilon_{2}=N \varepsilon_{3}=$ +1 . Moreover, the class number h_{K} of K verifies the identity

$$
h_{K}=\frac{1}{4} h_{k_{1}} h_{k_{2}} h_{k_{3}}
$$

where $h_{k_{i}}$ is the class number of the quadratic subfield $k_{i}(1 \leq i \leq 3)$.

Sketch of the proof. Let us note that

$$
\sqrt{\frac{x+\sqrt{x^{2}-r^{2}}}{r}}=\frac{x+r+\sqrt{x^{2}-r^{2}}}{\sqrt{2 r(x+r)}}
$$

Step 1. One can easily show

$$
[K: \mathbf{Q}]=4 \Longleftrightarrow h_{2 n+1}^{2}-1 \nsim 1 \text { and } h_{2 n+1}^{2}-1 \nsim D .
$$

Since $h_{2 n+1}^{2}-1=h_{2 n} h_{2 n+2}$ with $\left(h_{2 n}, h_{2 n+2}\right)=M$, one sees that

$$
h_{2 n+1}^{2}-1 \sim 1 \Longleftrightarrow\binom{h_{2 n}}{h_{2 n+2}} \sim\binom{M}{M}
$$

and

$$
h_{2 n+1}^{2}-1 \sim D \quad \Longleftrightarrow\binom{h_{2 n}}{h_{2 n+2}} \sim\binom{d_{1} M}{d_{2} M}
$$

where $d_{1} d_{2}=D_{0}$ with $\left(d_{1}, d_{2}\right)=1$. From Lemma 1 , one can easily verify that there exists a computable constant N_{1} such that for $n \geq N_{1},[K: \mathbf{Q}]=4$.

Step 2. One can see

$$
\eta_{2} \in\left\langle\varepsilon_{2}^{2}\right\rangle \Longleftrightarrow h_{2 n+1}+1 \sim 2 \text { or } h_{2 n+1}-1 \sim 2
$$

Then the above last conditions can be reduced to one of the following conditions:

$$
\binom{g_{n}}{h_{n+1}} \sim\binom{1}{2},\binom{2}{1},\binom{M}{2 M} \text { or }\binom{2 M}{M}
$$

or

$$
\binom{g_{n+1}}{h_{n}} \sim\binom{1}{2},\binom{2}{1},\binom{M}{2 M} \text { or }\binom{2 M}{M}
$$

From Lemma 1, there exists a computable constant $N_{2} \geq N_{1}$ such that for $n \geq N_{2}, \eta_{2} \notin\left\langle\varepsilon_{2}^{2}\right\rangle$. Similarly there exists a computable constant $N_{3} \geq N_{2}$ such that for $n \geq N_{3}, \eta_{3} \notin\left\langle\varepsilon_{3}^{2}\right\rangle$.

Step 3. Let $n \geq N_{3}$. Then in the minus case one sees that

$$
\begin{aligned}
\sqrt{\varepsilon_{1}} \in E_{K} & \Longleftrightarrow \sqrt{\eta_{1}} \in E_{K} \\
& \Longleftrightarrow M+2 \sim h_{2 n+1}^{2}-1 \text { or } \\
& M-2 \sim h_{2 n+1}^{2}-1 .
\end{aligned}
$$

It is obvious that $\sqrt{\varepsilon_{1}} \notin E_{K}$ in the plus case. So in the same way as in Step 1, we can show that there exists a computable constant $N_{4} \geq N_{3}$ such that for $n \geq N_{4}, \sqrt{\varepsilon_{1}} \notin E_{K}$. In the same way as above, one can see that there exists an effectively computable constant $N_{0} \geq N_{4}$ such that, for $n \geq N_{0}, \sqrt{\varepsilon_{2}} \notin E_{K}$ and $\sqrt{\varepsilon_{3}} \notin E_{K}$ and $\sqrt{\varepsilon_{1} \varepsilon_{2}} \notin E_{K}$ and $\sqrt{\varepsilon_{2} \varepsilon_{3}} \notin E_{K}$ and $\sqrt{\varepsilon_{1} \varepsilon_{3}} \notin E_{K}$ and $\sqrt{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}} \notin E_{K}$. In short, $E_{K}=$ E for $n \geq N_{0}$.
2. The case of an odd integer M. In this section, we shall restrict ourselves to the case where M is odd, i.e. $D=M^{2} \pm 4$ is odd. We will see that the constant N_{0} in Theorem 1 can be taken to be 7 ; we will also exhibit fundamental systems of units for $1 \leq n \leq 6$. First we quote the following results of Cohn [3, 4] and Ribenboim-MacDaniel [12].

Lemma 2. If $M=1$ in the plus case and $r>0$, then

$$
\begin{aligned}
& g_{r} \sim M \Longleftrightarrow r=1 \text { or } 3, \\
& g_{r} \sim 2 M \Longleftrightarrow r=6 .
\end{aligned}
$$

If $M=3$ in the plus case and $r>0$, then $g_{r} \nsim 2$, $g_{r} \nsim 2 M$, and

$$
\begin{aligned}
& g_{r} \sim 1 \Longleftrightarrow r=3 \\
& g_{r} \sim M \Longleftrightarrow r=1
\end{aligned}
$$

If $M=3$ in the minus case and $r>0$, then $g_{r} \nsim 1$, $g_{r} \nsim 2 M$, and

$$
\begin{aligned}
& g_{r} \sim 2 \Longleftrightarrow r=3 \\
& g_{r} \sim M \Longleftrightarrow r=1
\end{aligned}
$$

If $M=5$ in the plus case and $r>0$, then $g_{r} \nsim 1$, $g_{r} \nsim 2 M$, and

$$
\begin{aligned}
& g_{r} \sim 2 \Longleftrightarrow r=6 \\
& g_{r} \sim M \Longleftrightarrow r=1
\end{aligned}
$$

If $M=27$ in the minus case and $r>0$, then $g_{r} \nsim 1$, $g_{r} \nsim 2 M$, and

$$
\begin{aligned}
& g_{r} \sim M \Longleftrightarrow r=1 \\
& g_{r} \sim 2 \Longleftrightarrow r=3
\end{aligned}
$$

Elsewhere $g_{r} \nsim 2, g_{r} \nsim 2 M$, and

$$
\begin{aligned}
& g_{r} \sim 1 \Longleftrightarrow r=1 \quad(\text { and } M \sim 1) \\
& g_{r} \sim M \Longleftrightarrow r=1
\end{aligned}
$$

Using this lemma, one can get the following result.

Theorem 2. Let M (and $\left.D=M^{2} \pm 4\right)$ be odd. Then the unit group E_{K} of K is given by

The fact $\sqrt{\varepsilon_{1} \varepsilon_{3}} \notin E_{K}$ except for $n=2$ with $M=5$ in the minus case can be shown in the following way. First we see

$$
\begin{aligned}
& \sqrt{\varepsilon_{1} \varepsilon_{3}} \in E_{K} \\
& \Longleftrightarrow\left\{\begin{array}{l}
g_{n} g_{n+1} \sim 2 M(M+2) \text { or } 2 M(M-2) \\
\text { or } \\
h_{n} h_{n+1} \sim 2 M(M+2) \text { or } 2 M(M-2)
\end{array}\right.
\end{aligned}
$$

By Lemma 2, one sees that the possible index $n=2$ and M must satisfy the conditions $M+1 \sim 6$, and $M-1 \sim 1$ and $M-2 \sim 3$. Put $M-1=x^{2}, M-$ $2=3 y^{2}$ and $M+1=6 z^{2}$. Then the existence of such an integer M is equivalent to the existence of integer solutions of the following simultaneous Fermat-Pell equations

$$
\left\{\begin{array}{l}
x^{2}-3 y^{2}=1 \\
y^{2}-2 z^{2}=-1
\end{array}\right.
$$

Let us rather consider the following equivalent equations

$$
\left\{\begin{array}{l}
x^{2}-3 y^{2}=1 \tag{1}\\
w^{2}-2 y^{2}=2
\end{array}\right.
$$

where $w=2 z$. With the help of a result of Rickert (see (1.7) in [13]), we will show that these equations have only one positive integer solution: $(x, y, w)=$ $(2,1,2)$.

Lemma 3 (Rickert). Let u, v be non-zero integers. All integer solutions x, y, z of the following
simultaneous Fermat-Pell equations

$$
\left\{\begin{array}{l}
x^{2}-3 y^{2}=u \\
z^{2}-2 y^{2}=v
\end{array}\right.
$$

satisfy

$$
\max \{|x|,|y|,|z|\} \leq\left(10^{7} \max \{|u|,|v|\}\right)^{12}
$$

Then to find the positive integer solutions of (1) is equivalent to finding all non-negative integers m, n for which

$$
\left\{\begin{array}{l}
x=r_{n}=\left((2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}\right) / 2, \\
y=s_{n}=\left((2+\sqrt{3})^{n}-(2-\sqrt{3})^{n}\right) /(2 \sqrt{3}), \\
y=p_{m}=\left((1+\sqrt{2})^{2 m+1}+(1-\sqrt{2})^{2 m+1}\right) / 2 \\
w=q_{m}=\left((1+\sqrt{2})^{2 m+1}-(1-\sqrt{2})^{2 m+1}\right) / \sqrt{2}
\end{array}\right.
$$

From Lemma 3, we see that $(1+\sqrt{2})^{2 m}<p_{m} \leq$ $\left(10^{7} \times 2\right)^{12}$ for $m \geq 1$ implies $m<(42 \log (10)+$ $6 \log (2)) / \log (1+\sqrt{2})=114.443 \cdots<115$. We have checked that for $0 \leq m \leq 114, p_{m}=s_{n}$ only for $m=0, n=1$, i.e., the simultaneous Fermat-Pell equations (1) have only the positive integer solution $(x, y, w)=(2,1,2)$.

Acknowledgement. We would like to express our warmest thanks to Prof. I. Wakabayashi, who suggested us to use Rickert's result to simplify our first proof for solving the above Fermat-Pell equations.

References

[1] A. Baker and H. Davenport: The equations $3 x^{2}-$ $2=y^{2}$, and $8 x^{2}-7=z^{2}$. Quart. J. Math. Oxford, (2), 20, 127-137 (1969).
[2] R. T. Bumby: The diophantine equation $3 x^{4}-$ $2 y^{2}=1$. Math. Scand., 21, 144-148 (1967).
[3] J. H. E. Cohn: Eight diophantine equation. Proc. London Math. Soc., 16, 153-166 (1966).
[4] J. H. E. Cohn: Squares in some recurrent sequences. Pacific J. Math., 41, 631-646 (1972).
[5] S. Katayama and S.-G. Katayama: Fibonacci, Lucas and Pell numbers and class numbers of bicyclic biquadratic. Math. Japon., 42, 121-126 (1995).
[6] C. Levesque: Systèmes fondamentaux d'unités de certains corps de degré 4 et de degré 8 sur \boldsymbol{Q}. Canad. J. Math., XXXIV, nr. 5, 1059-1090 (1982).
[7] W. Ljunggren: Einige Eigenschaften der Einheiten reeller quadratischer und reinbiquadratischer Zahlkörper. Oslo Vid. Akad. Strifter, 1, nr. 12 (1936).
[8] K. Nakamula and A. Pethő: Squares in binary recurrence sequences (preprint).
[9] A. Pethő: Perfect powers in second order linear recurrences. J. Number Theory, 15, 5-13 (1982).
[10] A. Pethő: Full cubes in the Fibonacci sequence. Publ. Math. Debrecen, 30, 1-2, 117-127 (1983).
[11] P. Ribenboim: The Book of Prime Number Records, 2nd ed., Springer-Verlag, New York (1989).
[12] P. Ribenboim and W. L. McDaniel: The square terms in Lucas sequences. J. Number Theory, 58,

104-123 (1996).
[13] J. H. Rickert: Simultaneous rational approximations and related Diophantine equations. Math. Proc. Cambridge Philos. Soc., 113, 461-472 (1993).
[14] T. N. Shorey and C. L. Stewart: On the diophantine equation $a x^{2 t}+b x^{t} y+c y^{2}=d$ and pure powers in recurrences. Math. Scand., 52, 24-36 (1983).

[^0]: *) Department of Mathematical Sciences, Tokushima University, 1-1 Minamijosanjima-cho, Tokushima 770-8502.
 **) Département de Mathématiques et de Statistique, Université Laval, Canada.
 ***) Department of Mathematics, Saga University, 1 Honjo-cho, Saga 840-8502.

