Modified complexity and *-Sturmian word

By Izumi NAKASHIMA,^{*)} Jun-ichi TAMURA,^{**)} and Shin-ichi YASUTOMI^{***)}

We give analogies of the complexity p(n) and Sturmian words which are called the *-complexity $p_*(n)$ and *-Sturmian words. We announce theorems about *-Sturmian words in this paper. The proofs and details will be published elsewhere. We consider words over an alphabet $L = \{0, 1\}$. Let L^n be the set of all words of length $n \ge 0, L^0 = \{\lambda\}, \lambda$ is the empty word. Let L^* be the set of all finite words and L^{N} (resp. L^{-N}) be the set of right-sided (resp. left-sided) infinite words. A two-sided infinite words $W \in L^{\mathbf{Z}}$ is defined to be a map $W : \mathbf{Z} \to L$. We identify two words $V, W \in L^{\mathbb{Z}}$ if V(x+y) = W(x) for all $x \in \mathbb{Z}$ for some fixed $y \in \mathbb{Z}$. We put $L^{\wedge} = L^* \cup$ $L^{\mathbf{N}} \cup L^{-\mathbf{N}} \cup L^{\mathbf{Z}}$. We denote the set of all subwords of W by D(W). We put $D(n; W) := D(W) \cap L^n$ $(n \ge 0)$. The complexity of a word W is a function defined by

$$p(n) = p(n; W) := \sharp D(n; W).$$

A *-subword w of W is a word $w \in D(W)$ which occurs infinitely many times in W. We put $D_*(n;W) := D_*(W) \cap L^n$, where $D_*(W)$ is the set of \ast -subwords of W. We define \ast -complexity

$$p_*(n) = p_*(n; W) := \sharp D_*(n; W).$$

A Sturmian word is defined to be a word $W \in L^N \cup$ $L^{-N} \cup L^{Z}$ satisfying

$$|\xi(A) - \xi(B)| \le 1$$

for any $A, B \in D(n; W)$ for all $n \ge 0$, where $\xi(w)$ denotes the number of occurrences of a symbol 1 appearing in a word $w \in L^*$, cf. [2]. We define a *-Sturmian word to be a word $W \in L^N \cup L^{-N} \cup L^Z$ satisfying

$$|\xi(A) - \xi(B)| \le 1$$

for any $A, B \in D_*(n; W)$ for all $n \geq 0$ 0. $\max_{A \in D(n;W)} \xi(A) \text{ and } \sigma'(n;W) =$ Let $\sigma(n; W) =$

 $\min_{A \in D(n;W)} \xi(A).$

Theorem 1 (Morse and Hedlund [2]). If Wis a Sturmian word, then $p(n; W) \leq n+1$, and there is the density $\alpha = \lim_{n \to \infty} \frac{\sigma(n, W)}{n} = \lim_{n \to \infty} \frac{\sigma'(n, W)}{n}$. We can classify one-sided or two-sided infinite

Sturmian words as follows:

(Type I) α is irrational,

(Type II) α is rational and W is purely periodic.

(Type III) α is rational and W is not purely periodic.

It is known that each case can occur. The words of Type III will be referred to as skew Sturmian words. Let $0 < \alpha < 1$ and β be real numbers. We define $G(n, \alpha, \beta) = |(n+1)\alpha + \beta| - |n\alpha + \beta|$ and $G'(n, \alpha, \beta) = [(n+1)\alpha + \beta] - [n\alpha + \beta],$ where |x|is the greatest integer which does not exceed x and $\begin{bmatrix} x \end{bmatrix}$ is the least integer which is not smaller than x. A word $G(\alpha, \beta) \in L^N$ is defined by

$$G(\alpha,\beta) = G(0,\alpha,\beta)G(1,\alpha,\beta)\cdots G(n,\alpha,\beta)\cdots$$

 $G'(\alpha,\beta)$ is defined similarly by using $G'(n,\alpha,\beta)$. We set $G(\alpha) = G(\alpha, 0), G'(\alpha) = G'(\alpha, 0), G(n, \alpha) =$ $G(n, \alpha, 0)$ and $G'(n, \alpha) = G'(n, \alpha, 0)$.

Theorem 2 (Morse and Hedlund [2]). If α is irrational (resp. rational), then $G(\alpha, \beta)$ and $G'(\alpha, \beta)$ are Sturmian words of Type I (resp. TypeII). Conversely, if $W \in L^N$ is a Sturmian word of type I with density $\alpha = \lim_{n \to \infty} \frac{\sigma(n, W)}{n}$, there exists a real number β such that $W = G(\alpha, \beta)$ or $W = G'(\alpha, \beta)$. For $A, B \in L^*$ we denote by $\{A, B\}^*$ the set

$$\{A, B\}^* := \{w_1 \cdots w_n; w_i = A \text{ or } B \ n \ge 0\}.$$

We say a word $W \in \{a, b\}^*$ is strictly over $\{a, b\}$ if both a and b eventually occur in W. w^* (resp. *w) $(\lambda \neq w \in L^*)$ denote the words $w^* := www \cdots \in$ $L^{\mathbf{N}}$ (resp. * $w := \cdots www \in L^{-\mathbf{N}}$), w^n ($n \in \mathbf{N} \cup$ $\{0\}, w \in L^*$ is the word $w^n := v_1 v_2 \cdots v_n (v_i = w)$. We mean by vw (resp. vw^*) the word (v)w (resp. $v(w^*)).$

Theorem 3 (Morse and Hedlund [2]). Let $W \in L^{\mathbf{N}}$ be a purely periodic Sturmian word with

^{*)} General Education, Gifu National College of Technology, 2236-2 Kamimakuwa, Shinsei-cho, Motosu-gun, Gifu 501 - 0495.

^{**)} Faculty of General Education, International Junior College, 4-15-1 Ekoda, Nakano-ku, Tokyo 165-0022.

^{***)} General Education, Suzuka National College of Technology, Shiroko, Suzuka, Mie 510-0294.

density $\alpha = p/q$ ($p \in N$, q > 1, and (p,q) = 1). Then W can be extended in two ways to a two-sided infinite skew Sturmian word which is represented by *ACB* $(A, B, C \in L^q \text{ with } \xi(A) = \xi(B) = p$, and $\xi(C) = p - 1$ or p + 1). If the density of a one-sided infinite Sturmian word W is 0 or 1, then W can be uniquly extended to a two-sided infinite skew Sturmian word.

If $x \neq 0, 1$ is rational, then G(x) is purely periodic and there are two extensions to a two-sided infinite skew Sturmian word which is denoted by G(x)(resp. $\underline{G}(x)$) if $\xi(C) = p + 1$ (resp. $\xi(C) = p - 1$). If x = 0 (resp. x = 1), then G(x) can be extended to a two-sided infinite skew Sturmian word which is denoted by $\overline{G}(x)$ (resp. $\underline{G}(x)$).

Definition 1 (super Bernoulli word, cf. [3]). If $W \in L^N \cup L^{-N} \cup L^Z$ satisfies one of the following conditions (C1)–(C4), we call W a super Bernoulli word related to $(x, y), 0 \le x \le y \le 1$:

 $\begin{array}{ll} ({\rm C1}) & D_*(W) = \bigcup_{z \in [x,y]} D(G(z)). \\ ({\rm C2}) & D_*(W) = \bigcup_{z \in [x,y]} D(G(z)) \bigcup D(\underline{G}(x)) \mbox{ with } \end{array}$ $x \in \mathbf{Q}$.

(C3) $D_*(W) = \bigcup_{z \in [x,y]} D(G(z)) \bigcup D(\overline{G}(y))$ with $y \in \mathbf{Q}$.

(C4) $D_*(W) = \bigcup_{z \in [x,y]} D(G(z)) \bigcup D(\underline{G}(x)) \bigcup D(\overline{G}(y))$ with $x, y \in \mathbf{Q}$.

The converse of the assertion given in Theorem 1 dose not hold, but the words $W \in L^{\wedge}$ satisfying $p(n; W) \leq n+1$ for all $n \in \mathbf{N}$ are characterized by Coven and Hedlund [1].

We need some definitions.

Definition 2. We define substitutions δ_0, δ_1 by

$$\delta_0 : \begin{cases} 0 \to 0\\ 1 \to 01 \end{cases}, \quad \delta_1 : \begin{cases} 0 \to 01\\ 1 \to 1 \end{cases}$$

 δ_k can be extended to L^{\wedge} by

$$\delta_k(W) := \cdots \delta_k(w_i) \cdots$$

for $W = \cdots w_i \cdots \in L^{\wedge}$. The map $\delta_k : L^{\wedge} \to L^{\wedge}$ is injective. Hence we can write $B = \delta_k^{-1}(A)$ if A = $\delta_k(B), (A, B \in L^{\wedge}).$

Definition 3. For $k_1, ..., k_i \in \{0, 1\}$, we define $A_i = A(k_1, \ldots, k_i) := \delta_{k_1} \circ \cdots \circ \delta_{k_i}(0), B_i =$ $B(k_1,\ldots,k_i) := \delta_{k_1} \circ \cdots \circ \delta_{k_i}(1) \ (A_0 := 0, \ B_0 := 1).$

Theorem 4. Let $W \in L^{\mathbf{N}}$. Then the following four conditions are equivalent:

(i) W is *-Sturmian.

- (ii) $p_*(n; W) \le n + 1$ for all $n \ge 0$.
- (iii) There exists a finite or infinite sequence $\kappa = \{k_1, k_2, \dots, k_i \dots\} \ k_i \in \{0, 1\} \ such \ that$

 $W = u_0 u_1 \cdots u_i \cdots, \quad u_0 A_i^*, \quad or \quad u_0 B_i^*,$

where $A_i = A(k_1, \dots, k_i), B_i = B(k_1, \dots, k_i)$ are words given in Definition 3, $u_0 \in L^*$, and each u_i is a certain finite word strictly over $\{A_i, B_i\}$ for all i > 0.

(iv) W is a super Bernoulli words which satisfies one of the conditions (C1), (C2) or (C3) in Definition 1 with x = y.

Remark 1. In the condition (iii), if $p_*(m; W)$ = m + 1 for any m, then $W = u_0 u_1 \cdots u_i \cdots$. If $p_*(m; W) < m+1$ for some m, then $W = u_0 A_i^*$ or $u_0 B_i^*$ and $p_*(n; W)$ is bounded. In the condition (iv), if x(=y) is an irrational number, or W satisfies the conditions (C2) or (C3) in Definition 1, then $p_*(n; W) = n + 1$ for all n. If x is a rational number and W satisfies the condition (C1) in Definition 1, then $p_*(n; W)$ is bounded.

Theorem 5. Let $W \in L^{\mathbf{Z}}$. Then the following three conditions are equivalent:

- (i) W is *-Sturmian.
- (ii) There exist a finite or infinite sequence $\kappa =$ $\{k_1, k_2, \ldots, k_i, \ldots\}, k_i \in \{0, 1\}$ such that W has one of the following representations,
 - 1) $W = \cdots u_{-i} \cdots u_{-1} u_0 u_1 \cdots u_i \cdots$, κ is an infinite sequence,
 - 2) $W = \cdots u_{-i} \cdots u_{-1} u_0 A_i^*$, κ is infinite and $k_i = 0$ for all i > j,
 - 3) $W = A_j u_0 u_1 \cdots u_i \cdots$, κ is infinite and $k_i = 0$ for all i > j,
 - 4) $W = \cdots u_{-i} \cdots u_{-1} u_0 B_i^*$, κ is infinite and $k_i = 1$ for all i > j,
 - 5) $W = {}^{*}B_{i}u_{0}u_{1}\cdots u_{i}\cdots$, κ is infinite and $k_i = 1$ for all i > j,
 - 6) $W = A_i u_0 A_i^*$, κ is finite and k_j is its final term and
 - 7) $W = B_i u_0 B_i^*$, κ is finite and k_i is its final term,

where $A_i = A(k_1, \cdots, k_i), B_i = B(k_1, \cdots, k_i)$ are words given in definition 3, $u_0 \in L^*$, and u_i and u_{-i} are certain finite words strictly over $\{A_i, B_i\}$ for i > 0.

(iii) W is a super Bernoulli word which satisfies one of the conditions (C1), (C2) or (C3) in Definition 1 with x = y.

Theorem 6. Let $W \in L^{\mathbf{Z}}$ be a *-Sturmian

No. 3]

word. Then, $p_*(n; W) \leq n+1$ for all $n \geq 0$.

Theorem 7. Let $W \in L^{\mathbf{Z}}$. Suppose that $p_*(n; W) \leq n+1$ for all $n \geq 0$ and W is not a *-Sturmian word. Then, there exists a finite sequence $\{k_i\}_{i=1}^j$ such that

$$W = A_{i}u_{0}B_{i}^{*}, \quad or \quad B_{i}u_{0}A_{i}^{*},$$

where $u_0 \in L^*$, $A_j = A(k_1, \dots, k_j)$, $B_j = B(k_1, \dots, k_j)$ are words given in Definition 3.

Let us consider the complexity of an infinite word W written by

(1)
$$W = 10^{a_1} 10^{a_2} 10^{a_3} \cdots, 0 \le a_1 \le a_2 \le a_3 \cdots$$

It is clear that W is a *-Sturmian word. We get following Theorems on W.

Theorem 8. Let W be a word given by (1) with $(a_0 :=) 0 \le a_1 < a_2 < a_3 \cdots$. Then

 $p(n;W) = n + 1 + \sharp\{(i,j) \in N^2; j \le a_{i-1} + 1, a_i + j \le n - 1\}, \ n \ge 0.$

Theorem 9. Let W be as in Theorem 8. Then,

 $\begin{array}{l} p(n;W) \leq \frac{n^2}{4} + \frac{n}{2} + \frac{17}{8} + \frac{(-1)^{n+1}}{8} - \lfloor (\frac{3}{4} + \frac{n}{4})^{-1} \rfloor & (n \geq 0). \end{array}$ $\begin{array}{l} \text{ The above estimate is best possible; the equality} \\ \text{ is attained by } W = W_0 := 11010^2 10^3 10^4 \cdots. \end{array}$

We write $f(n) \sim g(n)$ if f(n) = O(g(n)) and g(n) = O(f(n)).

Theorem 10. Let W be a word given by (1) with $0 \le a_1 < a_2 < \cdots$ and $a_n \sim n^{\alpha}$ ($\alpha \ge 1$). Then $p(n;W) \sim n^{1+1/\alpha}$.

Theorem 11. Let $k \geq 2$ be an integer, and $\{b_n\}_{n=1}^{\infty}$ a linear recurrence sequence with $x^k - x - 1$ as its characteristic polynomial defined by the initial condition:

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_k \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 2 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \ddots & 1 \\ \vdots & \vdots & 2 & 1 \\ 1 & 1 & 2 & \cdots & 2 & 2 \end{pmatrix} \begin{pmatrix} t_1 \\ t_2 \\ t_3 \\ \vdots \\ \vdots \\ t_k \end{pmatrix},$$
$$(t_1, t_2, \dots, t_k) \in \mathbf{N}^k.$$

Let W be a word defined by

$$W := 10^{a_1} 10^{a_2} 10^{a_3} \cdots, \quad a_n := b_n - 1.$$

Then p(n; W) is given by the following, so that

$$p(n; W) = kn + c$$
 for all $n \ge b_k + 1$, $c \le 0$,

where c is a non-positive constant, and c = 0 only if $k = 2, t_1 = t_2 = 1$.

$$= \begin{cases} n+1 & (0 \le n \le b_1) \\ n+2 & (b_1+1 \le n \le b_2) \\ 2n-b_2+2 & (b_2+1 \le n \le b_3) \\ 3n-b_2-b_3+2 & (b_3+1 \le n \le b_4) \\ \dots & \dots & \dots \\ jn-b_2-\dots-b_j+2 & (b_j+1 \le n \le b_{j+1}) \\ \dots & \dots & \dots \\ kn-b_2-\dots-b_k+2 & (n \ge b_k+1) \end{cases}$$

If a_n is unbounded in (1), then without loss of generality, we can rewrite (1):

(2)
$$W = (10^{a_1})^{e_1} (10^{a_2})^{e_2} (10^{a_3})^{e_3} \cdots$$

with $(a_0 := 0) \le a_1 < a_2 < \cdots, \ e_n \ge 1.$

Theorem 12. Let W be a word given by (2). Then

 $p(n;W) = n + 1 + \#\{(i,j,k) \in \mathbf{N}^3; \ j \le a_i + 1, k \le e_i - 1, k(a_i + 1) + j \le n\} + \#\{(i,j) \in \mathbf{N}^2; \ j \le a_{i-1} + 1, e_i(a_i + 1) + j \le n\} \ (n \ge 0).$

Related to the magnitude of the usual complexity of *-Sturmian words, we can show the following Theorems 13, 14.

Theorem 13. Any *-Sturmian word $W \in L^N$ is deterministic, i.e.,

$$\lim_{n \to \infty} \frac{\log(p(n; W))}{n} = 0.$$

Theorem 14. For any small positive number ϵ there exists a *-Sturmian word $W \in L^{\mathbb{N}}$ such that $p(W;n) > 2^{n^{1-\epsilon}}$ holds for all sufficiently large integer n.

References

- E.M. Coven and G.A. Hedlund: Sequences with minimal block growth. Math. Systems Theory, 7, 138–153 (1973).
- M. Morse and G.A. Hedlund: Symbolic dynamics II. Sturmian trajectories. Amer. J. Math., 62, 1– 42 (1940).
- [3] S. Yasutomi: The continued fraction expansion of α with $\mu(\alpha) = 3$. Acta Arith., 84, no.4, 337–374 (1998).