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Modified complexity and *-Sturmian word

By Izumi NAKASHIMA,* Jun-ichi TAMURA,**) and Shin-ichi YAsuTOMI

We give analogies of the complexity p(n) and
Sturmian words which are called the x-complexity
p«(n) and *-Sturmian words. We announce theorems
about #-Sturmian words in this paper. The proofs
and details will be published elsewhere. We consider
words over an alphabet L = {0,1}. Let L™ be the
set of all words of length n > 0, L® = {\}, X is the
empty word. Let L* be the set of all finite words
and LY (resp. L~V) be the set of right-sided (resp.
left-sided) infinite words. A two-sided infinite words
W € L% is defined to be a map W : Z — L. We
identify two words V,W € LZ if V(z+y) = W(z) for
all z € Z for some fixed y € Z. We put L = L* U
LN UL~N U LZ. We denote the set of all subwords
of W by D(W). We put D(n; W) := D(W) N L"
(n > 0). The complexity of a word W is a function
defined by

p(n) = p(n; W) := D (n; W).

A s-subword w of W is a word w € D(W)
which occurs infinitely many times in W. We put
Dy(n; W) := D, (W) N L", where D,(W) is the set
of #-subwords of W. We define *-complexity

P«(n) = pu(n; W) := 2Dy (n; W).

A Sturmian word is defined to be a word W € LN U
L~N U LZ satisfying

1§(A4) —&(B)[ <1
for any A,B € D(n;W) for all n > 0, where {(w)
denotes the number of occurrences of a symbol 1 ap-
pearing in a word w € L*, cf. [2]. We define a
*-Sturmian word to be a word W € LN UL N UL?
satisfying

1§(4) =&(B) <1

for any A,B € D,(n;W) for all n > 0.

Let o(n;W) = AGIII)l(a’I:L)'(W)g(A) and o' (m;W) =
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Theorem 1 (Morse and Hedlund [2]). If W

is a Sturmian word, then p(n; W) < n+1, and there
!
is the density « = lim M = lim M.
n—r oo n n— 00 n

We can classify one-sided or two-sided infinite
Sturmian words as follows:

(Type I) « is irrational,

(Type II) « is rational and W is purely peri-

odic,

(Type III) « is rational and W is not purely

periodic.
It is known that each case can occur. The words of
Type III will be referred to as skew Sturmian words.
Let 0 < a < 1 and 8 be real numbers. We de-
fine G(n,a,8) = [(n + Da+ B] — |na + 3] and
G'(n,a,0) = [(n+ 1)a+ ] — [na + (], where |z]
is the greatest integer which does not exceed = and
[2] is the least integer which is not smaller than x.
A word G(a, 3) € LY is defined by

G(a,0) =G(0,a,68)G(1,a,5) - - - G(n,a, B) - - - .

G'(«, B) is defined similarly by using G'(n, a, 5). We
set G(a) = G(,0), G'(a) = G'(a,0), G(n,a) =
G(n,,0) and G'(n,a) = G'(n, a, 0).

Theorem 2 (Morse and Hedlund [2]). If v is
irrational (resp. rational), then G(a, 8) and G'(«, 3)
are Sturmian words of Type I (resp. Typell). Con-
versely, if W € LN is a Sturmian word of type I

w

with density o = lim M, there exists a real
n—oo n

number 3 such that W = G(«, 8) or W = G'(«, 8).

For A, B € L* we denote by {A, B}* the set
{A, B} :={wy - wp;w; = Aor Bn>0}.

We say a word W € {a,b}* is strictly over {a,b} if
both a and b eventually occur in W. w* (resp. *w)
(A # w € L*) denote the words w* = www--- €
LN (resp. *w := ---www € L™N), w" (n € N U
{0}, w € L*) is the word w" := vyvg -+ - v, (v; = w).
We mean by *vw (resp. vw*) the word (*v)w (resp.
Theorem 3 (Morse and Hedlund [2]). Let
W e LN be a purely periodic Sturmian word with
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density « = p/q (p € N, ¢ > 1, and (p,q) = 1).
Then W can be extended in two ways to a two-sided
infinite skew Sturmian word which is represented
by *ACB* (A,B,C € L% with £(A) = &(B) = p,
and £(C) = p—1 or p+1). If the density of a
one-sided infinite Sturmian word W is 0 or 1, then
W can be uniquly extended to a two-sided infinite
skew Sturmian word.

If  # 0,1 is rational, then G(z) is purely peri-
odic and there are two extensions to a two-sided in-
finite skew Sturmian word which is denoted by G(z)
(resp. G(x)) if £(C) = p+ 1 (resp. &(C) = p— 1).
If 2 = 0 (resp. © = 1), then G(z) can be extended
to a two-sided infinite skew Sturmian word which is

denoted by G(x) (resp. G(z)).

Definition 1 (super Bernoulli word, cf. [3]).
If W e LN UL~N U L? satisfies one of the following
conditions (C1)—(C4), we call W a super Bernoulli
word related to (z,y), 0 <z <y < 1:
(C1) Da() = Usfyy DIG(2))
(C2) Di(W) =U.efry P(G(2)) U D(G(x)) with
z e Q.
(C3) Do) = U,epyy DGE)UDE()) with
y € Q.
(c1)
D.(W) = U, ey D(G(2) U D(G()) U D@(w))
with z,y € Q.

The converse of the assertion given in Theorem
1 dose not hold, but the words W € L satisfying
p(n; W) <n+1 for all n € N are characterized by
Coven and Hedlund [1].

We need some definitions.

Definition 2. We define substitutions dg, 1
by

5. {00 5. J0—01
“Y1=01 P l1—=1

0, can be extended to L" by
S (W) i= - 8y (wy) - -

for W = ---w;--- € L. The map 8, : L — L"
is injective. Hence we can write B = 4, ' (A) if A =
0(B), (A,B e L").

Definition 3. For kq,..
fine Al = A(k‘l,...,ki) = 5k1 O:--0 (5/%(0), Bi =
B(kl, .. ,kz) = 6k1 ©--+0 5101(1) (AO = 0, BO = 1)

Theorem 4. Let W € LN. Then the follow-
ing four conditions are equivalent:

(i) W is x-Sturmian.

. k; € {0,1}, we de-
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(ii) pe(n; W) <n+1 for alln > 0.
(iii) There exists a finite or infinite sequence
k= {k1,ka, ..., k;...} ki €{0,1} such that

UOA*

£
W =wuouy---u; -, i, or ugBj,

where Az = A(kl, cee ,ki), B,L = B(kl, cee ,kz)

are words given in Definition 3, ug € L*, and

each u; s a certain finite word strictly over

{4;, B;} for all i > 0.

(iv) W is a super Bernoulli words which satis-

fies one of the conditions (C1), (C2) or (C3) in

Definition 1 with x = y.

Remark 1. Inthe condition (iii), if p.(m; W)
= m + 1 for any m, then W = wouq ---u;---. If
ps(m; W) < m 4 1 for some m, then W = oA}
or upB} and p.(n; W) is bounded. In the condition
(iv), if z(= y) is an irrational number, or W satis-
fies the conditions (C2) or (C3) in Definition 1, then
pe(n; W) =n+1 for all n. If = is a rational number
and W satisfies the condition (C1) in Definition 1,
then p,(n; W) is bounded.

Theorem 5. Let W € L%. Then the follow-
ing three conditions are equivalent:
(i) W is *-Sturmian.
(ii) There exist a finite or infinite sequence K =
{ki,kay... ki, ..}, ki € {0,1} such that W has
one of the following representations,
1) W = ot u_quguy - -
infinite sequence,
2) W= cu—geeu_yugA}, K is infinite and
ki =0 for all i > j,
3) W =*Ajuguy -+
ki =0 for all i > j,
) W=--u_;- ~u_1ugBj, K is infinite and
ki =1 foralli > j,
5) W =*Bjuguy - ;-
ki =1 for alli > j,
6) W ="Ajuo A}, k is finite and k; is its final
term and
7) W ="BjuoBj}, & is finite and k; is its final
term,
where Az = A(k‘l, tee ,ki), Bi = B(k‘l, tee ,k/’l)
are words given in definition 3, ug € L*, and
u; and u_; are certain finite words strictly over
{Ai,Bi} fOTi > 0.
W is a super Bernoulli word which satisfies one
of the conditions (C1), (C2) or (C3) in Defini-
tion 1 with x = y.
Theorem 6. Let W € L% be a x-Sturmian

, K 1S an

, K is infinite and

, K 1s infinite and

(iii)
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word. Then, px(n; W) <n+1 for alln > 0.

Theorem 7. Let W € LZ%. Suppose that
(s W) <m+1 for alln > 0 and W is not a -
Sturmian word. Then, there exists a finite sequence
{ki}gzl such that

w :*AquB;, or *BquA;,
where wg € L*, A; = Ak, ---,kj), B; =
B(ki,--- ,kj) are words given in Definition 3.

Let us consider the complexity of an infinite
word W written by

(1) W =10"110%210" - -+ [0<ay <az <ag---.

It is clear that W is a *-Sturmian word. We get
following Theorems on W.

Theorem 8. Let W be a word given by (1)
with (ag :=)0 < a1 < ag <as---. Then
p(m; W) =n+1+4{(i,j) € N*;j < a;1+1,a;+5 <
n—1} n>0.

Theorem 9. Let W be as in Theorem 8.
Then,

. n?  n_ 17 (=D 3 ny—1
pmW) < +3+5+—F%——1lG+7) 7] (n=
0). The above estimate is best possible; the equality
is attained by W = Wy := 11010210310 - - - .

We write f(n) ~ g(n) if f(n) = O(g(n)) and
g9(n) = O(f(n)).

Theorem 10. Let W be a word given by (1)
with0 < ay < az <--- and ap, ~n® (a > 1). Then
p(n; W) ~ nltt/e,

Theorem 11. Let kK > 2 be an integer, and
{b,}2° a linear recurrence sequence with % —x —1
as its characteristic polynomial defined by the initial
condition:

1011 ---1 t
b 1111 1 t
ba 1121 1] s
bs | — ,
. 1 ’
by M 2 1 :
112---2 2/ \#
(t1,ta,...,tx) € N*.

Let W be a word defined by
W :=10"110%210% --- , a, :=b, —

Then p(n; W) is given by the following, so that

p(Wsin) > 2n "

[Vol. 75(A),

p(n;W)=kn+c foralln>b,+1, ¢c<0,

where ¢ is a non-positive constant, and ¢ = 0 only if
k=2t =ty =1.

p(n; W)
n+1 (0<n<b)
n+2 (b1 +1<n<by)
2n — by + 2 (ba +1<n <bs)
3n—by —bg+2 (b3—|—1<n<b4)

]nfbgffb]+2 (bJ‘FlSnSbj_;'_l)

kn—by—---—bp+2 (n>bp+1)

If a,, is unbounded in (1), then without loss of gen-
erality, we can rewrite (1):

(2) W = (10°1)°1(10%2)% (10%)°3 - - - |

with (ag:=0)<a; <ag<- -, e, > 1.
Theorem 12. Let W be a word given by (2).
Then

p(; W) =n+1+48{(i,j,k) € N* j <a;+1,k <

ei— L k(a; +1)+j <n}+4{(i,j) e N? j <a;_1+
1ei(a; +1)+ 35 <n} (n>0).

Related to the magnitude of the usual complex-
ity of *-Sturmian words, we can show the following
Theorems 13, 14.

Theorem 13. Any x-Sturmian word W €
LN s deterministic, i.e.,

i o8 W)

n— oo n

=0.

Theorem 14. For any small positive number
€ there exists a *-Sturmian word W € LN such that
holds for all sufficiently large inte-
ger n.
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