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A note on q-analogues of Dirichlet series

By Hirofumi Tsumura

Department of Management, Tokyo Metropolitan College, 3-6-33 Azuma-cho, Akishima, Tokyo 196-8540

(Communicated by Shokichi Iyanaga, m.j.a., March 12, 1999)

Abstract: In this note, we study the q-Dirichlet series Zq(s) which was evaluated at non-
positive integers by Satoh. We consider the values of Zq(s) at positive integers. By letting q → 1,
we get the Euler formulas for ζ(2k) and the recent formulas for ζ(2k+1) given by Cvijović-Klinowski.
We also consider the relation between Zq(s) and Jackson’s q-Γ-function.
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1. Introduction. In [5], the modified q-
Bernoulli numbers {β̃k(q)} were defined by β̃0(q) =
(q − 1)/ log q, and

k∑

j=0

(
k

j

)
qj β̃j(q)− β̃k(q) =

{
1 (k = 1)
0 (k ≥ 2)

,

for an indeterminate q. Recently Satoh considered
the q-series Zq(s) =

∑
n≥1 qn/[n]s which interpo-

lated {β̃k(q)} at non-positive integers for a complex
number q with |q| < 1, where [x] = (1− qx)/(1− q)
(see [4] §4).

In this note, we consider the values of Zq(s) at
positive integers. Assume that q is a complex number
with |q| < 1 and let Z̃q(s) = Zq(s) + (1 − q)s/((1 −
s) log q). Note that if q → 1 then Z̃q(s) → ζ(s) for
any complex number s with Re(s) > 1, where ζ(s) is
the Riemann zeta function. We prove the following
series representations for Z̃q(s) at positive integers
by the same method as that in [6] §1. Note that an
empty sum is to be interpreted as nil.

Theorem. For a positive integer k,

(1) (2k − 1)π Z̃q(2k)− 2k

∞∑
n=1

qn sin([n]π)
[n]2k+1

+π

∞∑
n=1

qn cos([n]π)
[n]2k

=
k−1∑

j=1

(−1)j−1π2j+1

(2j + 1)!
(2k−2j−1)Z̃q(2k−2j)

− (1− q)2k+1

log q
sin

(
π

1− q

)

+(−1)k+1π2k+1

{
β̃1(q) + 1
(2k + 1)!

+
∞∑

m=1

(−1)mπ2m

(2k + 2m + 1)!
β̃2m+1(q)

}
;

(2) 2kZ̃q(2k + 1)− 2k

∞∑
n=1

qn cos([n]π)
[n]2k+1

−π

∞∑
n=1

qn sin([n]π)
[n]2k

=
k−1∑

j=1

(−1)j−1π2j

(2j)!
(2k − 2j)Z̃q(2k − 2j + 1)

− (1− q)2k+1

log q
cos

(
π

1− q

)

+(−1)k+1π2k

∞∑
m=0

(−1)mπ2m

(2k + 2m)!
β̃2m(q).

We can let q → 1 in above relations by the same
consideration as that in [6] §2. So we get the follow-
ing.

Corollary. For a positive integer k,

(1) ζ(2k) =
(−1)k(2π)2k

2{22k(k − 1) + 1}

×
[k−1∑

j=1

(−1)j−1(2j − 1)
(2k − 2j + 1)!

ζ(2j)
π2j

− 1
2(2k + 1)!

]
;

(2) ζ(2k + 1) =
(−1)k(2π)2k

k(22k+1 − 1)

×
[k−1∑

j=1

(−1)j−1j

(2k − 2j)!
ζ(2j + 1)

π2j

+
∞∑

m=0

(2m)!
(2m + 2k)!

ζ(2m)
22m

]
.

The above formula (1) is an analogue of that in
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[6, Theorem A]. From this, we can inductively obtain
the Euler formulas ζ(2) = π2/6, ζ(4) = π4/90, · · ·.
The above formula (2) is equal to the recent result
given by Cvijović-Klinowski (see [3, Theorem A]),
which is generalization of the Euler formula for ζ(3)
(c.f. [2]). They proved their result by using the func-
tional equation and the summation formula for ζ(s).
But our result is established only by elementary cal-
culations of uniformly convergent series.

Lastly we define the q-series Z̃q(s, b) which sat-
isfies that limq→1 Z̃q(s, b) coincides with the Hurwitz
zeta function ζ(s, b). And we consider the relation
between Z̃q(s, b) and Jackson’s q-Γ-function Γq(s).

2. Proof of Theorem. Satoh proved that

Z̃q(1− k) =




− β̃k(q)

k
(if k ≥ 2)

−β̃1(q)− 1 (if k = 1)

(see [4]§4, Example 1). A short proof of this fact
will be given in §4 below. In fact Satoh proved more
general result by using the formal groups. By the
above result, we can verify the relations in Theorem
by excuting direct calculation as in the same method
as that in [6] §1 as follows. Since |q| < 1, we have

2k

∞∑
n=1

qn sin([n]θ)
[n]2k+1

− θ

∞∑
n=1

qn cos([n]θ)
[n]2k

= 2k

∞∑
n=1

qn

[n]2k+1

∞∑

j=0

(−1)jθ2j+1

(2j + 1)!
[n]2j+1

−θ

∞∑
n=1

qn

[n]2k

∞∑

j=0

(−1)jθ2j

(2j)!
[n]2j

=
k−1∑

j=0

(−1)jθ2j+1

(2j + 1)!

{
(2k − 2j − 1)

∞∑
n=1

qn

[n]2k−2j

}

+
∞∑

j=k

(−1)jθ2j+1

(2j + 1)!

{
(2k − 2j − 1)

∞∑
n=1

qn[n]2j−2k

}
,

=
k−1∑

j=0

(−1)jθ2j+1

(2j + 1)!

{
(2k − 2j − 1)Z̃q(2k − 2j)

+
(1− q)2k−2j

log q

}

+
(−1)kθ2k+1

(2k + 1)!

(
β̃1(q) + 1 +

1
log q

)

+
∞∑

j=k+1

(−1)jθ2j+1

(2j + 1)!

(
β̃2j−2k+1(q) +

(1− q)2k−2j

log q

)

=
k−1∑

j=0

(−1)jθ2j+1

(2j + 1)!
(2k − 2j − 1)Z̃q(2k − 2j)

+
(1− q)2k+1

log q
sin

(
θ

1− q

)

+
(−1)kθ2k+1

(2k + 1)!
(β̃1(q) + 1)

+
∞∑

j=k+1

(−1)jθ2j+1

(2j + 1)!
β̃2j−2k+1(q).

Thus we get the proof of Theorem (1). The formula
(2) can be proved similarly.

3. Proof of Corollary. Let Fq(t) be the
generating function of {β̃k(q)}. We can see that
Fq(t) is determined as a solution of the following q-
difference equation (see [5]§1):

Fq(t) = etFq(qt)− t, Fq(0) =
(q − 1)
log q

.

We can easily verify that

Fq(t) =
q − 1
log q

e
t

1−q − t

∞∑
n=0

qne[n]t.

So Fq(t) is holomorphic in the whole complex plane
if |q| < 1, and F1(t) = t/(et − 1).

Lemma. Let r and d be real numbers with 0 <

r < 2π and 0 < d < 1. Then there exists a constant
M(r, d) > 0 such that

∣∣∣∣∣
β̃k(q)

k!

∣∣∣∣∣ ≤
M(r, d)

rk
,

for k ≥ 0, if d ≤ q ≤ 1.
Proof . Let Cr be a circle around O of radius

r in the complex plane. By the above consideration,
we can see that Fq(t) is continuous as a function
of (q, t) on the compact set [d, 1] × Cr. So we let
M(r, d) = Max|Fq(t)| on [d, 1]×Cr. By the fact that

β̃k(q)
k!

=
1

2πi

∫

Cr

Fq(t)t−k−1 dt,

we get the proof of Lemma.
By using well-known Weierstrass’ M-test for

uniform convergence, we can let q → 1 in the for-
mulas in Theorem. Since k ≥ 1, we can see that

(1− q)2k sin
(

π

1− q

)
→ 0,

(1− q)2k cos
(

π

1− q

)
→ 0,
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and β̃k(q)→ Bk if q → 1. By using Euler’s formula

ζ(2k) =
(−1)k−122k−1B2kπ2k

(2k)!
,

and the fact B2k+1 = 0 for k ≥ 1, we get the proof
of Corollary.

4. q-series Z̃q(s, b). We define the q-
Bernoulli polynomials {β̃k(x, q)} by

Gq(t, x) =
∞∑

k=0

β̃k(x, q)
tk

k!
,

where Gq(t, x) = Fq(qxt)e[x]t. We can easily verify
that

β̃k(1, q) = β̃k(q) if k 6= 1

and

β̃1(1, q) = β̃1(q) + 1.

Since

Gq(t, x) =

(
q − 1
log q

e
qxt
1−q − qxt

∞∑
n=0

qne[n]qxt

)
e[x]t

=
q − 1
log q

e
t

1−q − t

∞∑
n=0

qn+xe[n+x]t,

we have

β̃k(x, q) = − (1− q)1−k

log q
− k

∞∑
n=0

qn+x[n + x]k−1,

for any non-negative integer k. So we define the q-
series

Z̃q(s, b) =
(1− q)s

(1− s) log q
+
∞∑

n=0

qn+b

[n + b]s
,

for a real number b with 0 < b ≤ 1. Note that
Z̃q(s, 1) = Z̃q(s), and Z̃q(s, b)→ ζ(s, b) if q → 1. We
can see that

Z̃q(1− k, b) = −β̃k(b, q)/k

for any natural number k. Especially when b = 1,
Satoh’s result is given (see §2 above). Now we recall
Jackson’s q-Γ-function defined by

Γq(x) = (1− q)1−x

∏∞
n=0(1− qn+1)∏∞
n=0(1− qn+x)

.

In [1], Askey proved that

d2

dx2
log Γq(b) =

(
log q

q − 1

)2 ∞∑
n=0

qn+b

[n + b]2
.

So we get the following.
Proposition.

d2

dx2
log Γq(b) =

(
log q

q − 1

)2

Z̃q(2, b) + log q.

Since (log q)/(q−1)→ 1 and log q → 0 if q → 1,
the above relation can be regarded as a q-analogue
of the classical one (d2/dx2) log Γ(b) = ζ(2, b).
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