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Milnor numbers and classes of local complete intersections

By Jean-Paul BRASSELET,”) Daniel LEEMANN,**) José SEADE,"**) and Tatsuo SUuwa™***)

(Communicated by Heisuke HIRONAKA, M.J.A., Dec. 13, 1999)

Let V be an n-dimen-
sional compact complex subvariety of a complex
manifold M. When V is non-singular, the Chern
classes of the complex tangent bundle TV are well-
defined cohomology classes in H*(V';Z). We denote
by ¢« (V') their image by the Poincaré isomorphism

1. Introduction.

Py - 2= (v, z2) “Y g, (v, 2),

cap-product by the fundamental class [V] of V.
When V is singular there is no more Chern coho-
mology classes, but there are several theories gener-
alizing homology classes ¢.(V). For instance, the
Chern-Schwartz-MacPherson classes c¢f™ (V) ([16],
[17], [10], [3]) and the Fulton-Johnson classes ¢/ (V)
[5] are two different theories which coincide with
¢«(V) when V is non-singular. Our main purpose
is to compare the Chern-Schwartz-MacPherson and
the Fulton-Johnson classes when V is a local com-
plete intersection. In this paper, we give a presenta-
tion of the main results; the complete proofs will be
published elsewhere (see [4]).

On one hand, M. H. Schwartz defined actually
classes in H*(M, M — V;Z) ([16], 1965). Let us de-
note by m the complex dimension of M. It is proved
in [3](1979) that Schwartz classes are mapped by the
Alexander duality

H>" =) (M, M — V;Z) — Hy(V; Z)

onto the classes defined by MacPherson ([10], 1974).

We restrict ourselves to the case of a local com-
plete intersection V' defined by a holomorphic sec-
tion of a vector bundle. We consider a holomorphic
vector bundle £ — M of rank £ = m — n, and a
holomorphic section s generically transverse to the
zero section, such that V is the zero set s71(0). In
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this case, the virtual classes of V are defined in [4]
as the Chern classes ¢, (V) € H*(V;Z) of the “vir-
tual tangent bundle” [TM — E]|y (in the complex
K-theory K(V)). The virtual classes c; (V) coin-
cide with the usual Chern classes if V' is non-singular
and their images by the Poincaré duality (no more
an isomorphism), denoted by ¢2"(V), coincide with

*

the Fulton-Johnson classes ¢f'/ (V).

In order to compare the Schwartz-MacPher-
son and the Fulton-Johnson classes of a local com-
plete intersection, we have to study the difference
eV (V) — M (V). This difference localizes near the
singular part Sing(V') of V: more precisely, if we de-
note by (S4)a the family of connected components of
Sing(V), there are well defined elements 1..(V, S,) in
H.(S4;7Z), called “the (homological) Milnor classes”
of V at S,, such that we get the

Theorem A. We have,

(_1)n Z(ia)* (/U'*(V» Sa));

[e3

(V) = S (V) =

where (i)« : Hi(Sq) — Hy (V) denotes the natural
map arising from the inclusion S, C V.

The Milnor number is well defined by Milnor
[11], for hypersurfaces with isolated singular points,
by Hamm [7] and Lé [8] for local complete inter-
sections still with isolated singular points, and by
Parusiniski [12] for hypersurfaces with any compact
singular set. The following theorem justifies the ter-
minology “Milnor class” that we use.

Theorem B. (V. S,) is equal to the Milnor
number of V. at S in Ho(Sy) 2 Z, in all situations
where this number has been already defined.

Such a theory for Milnor classes in homology has
also been suggested by Yokura [21], and given in the
case of complex compact hypersurfaces by Aluffi [1]
and Parusiriski-Pragacz [14].

For r > 1, we explain how to compute the Mil-
nor class p,_1(V,Sa) by means of an r-frame F(7)
defined on the regular part Vj of V near (but off)
Sa, as the difference (up to sign) of two classes of
F() at S, the so-called “Schwartz class” and the
“virtual class” (Theorems C and D).
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For r = 1, the virtual class is an integer, called
the virtual index of the vector field. We interpret
this index as the Euler-Poincaré invariant x (V') =
(V") ~ [V'] of a “smoothing” V' of V' (Theorem
E), hence the formula

(V) =M (V) =x(V') = x(V).

When S, is non-singular, we give more explicit
formulas for the computation of p,._1(V,S,) in two
cases : for k = 1 (hypersurfaces), or when S, has
complex dimension r — 1 (Theorem F). Explicit ex-
amples appear in [4].

2. Local complete intersections and no-
tation. Let (V, M, E,s) be as above. Since we as-
sume the section s of F to be generically transverse
to the zero section, it is regular, and the components
of s with repect to a local trivialization of F generate
the ideal of (local) holomorphic functions vanishing
on V (by [20]). Thus, V is a local complete intersec-
tion in M. The restriction of E to the regular part
Vo of V may be canonically identified with the nor-
mal bundle of Vg in M. Thus E|y is an extension to
all of V' of this normal bundle. We still call it normal
bundle to V as in the non-singular case. The bundle
E|y depends only on V' and not on (E, s).

Let 3 be an analytic subset of V' containing the
singular part Sing(V'). [In practice, it will be in the
sequel the union of Sing(V') and of the singular part
of an r-frame on Vo = V — Sing(V)]. Denoting by
(Sa)a the set of connected components of 3, we shall
make the following assumption: each S, is either in-
cluded in Vj or is a connected component of Sing(V),
but none of them intersects simultaneously Vy and
Sing(V).

We will denote by {V;} a Whitney stratification
of M compatible with V and ¥. By Lojasiewicz,
there is a smooth triangulation (K) of M adapted to
V and X, and to the given stratification (i.e. having
V, the closed stata and ¥ as subcomplexes). Let us
denote by (K') a first barycentric subdivision of K,
and by (D) the cellular decomposition of M, dual to
(K), associated to (K’). The i-dimensional skeleton
of (D) will be denoted by (D).

For S being one of the Sy, we denote by 7 the
union of the (D)-cells which intersect S (or equiva-
lently of (D)-cells dual of (K)-simplices in S), and
we set T =7 NV. We denote by U a neighborhood
of S in M containing 7, and we set U = UNV. We
shall assume furthermore that U does not intersect
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the similar neighborhood U, for other S, ’s.

3. Topological definition of Milnor clas-
ses.

3-1. Schwartz-MacPherson classes and
their localization. One of the original definitions
of Chern classes uses the obstruction theory: If V is
a complex manifold of dimension n, the Chern class
cP(V) is the obstruction to the existence of a com-
plex r-frame tangent to V on the 2p-skeleton of a
suitable triangulation, where r =n — p + 1.

In the case of a stratified singular variety V' con-
tained in an m-dimensional complex manifold M, let
us write ¢ = m —r + 1. We recall that a stratified
r-frame on a subset A of M is an r-frame F(") such
that for every € A, F(")(x) is tangent to the stra-
tum containing , in particular, the restriction F(")
of this r-frame to Vj is tangent to V. Among such
r-frames there are “radial” r-frames, denoted Fér),
whose main properties are the following;:

(i) for a cell decomposition (D) as above, all vectors
of Fér) are pointing outwards the neighborhoods
T,

(ii) FO(T) is defined on the (2¢ — 1)-dimensional cells
of (D) and have isolated singularities inside the
(2¢q)-cells,

(iii) the index of F(gr) in a (2q)-cell o C M is the
same as the index of its restriction to cNV; C V;.
The class ¢%,,(V) € H*(M,M — V;Z) repre-

sents the obstruction to extend a radial r-frame Fér)

to (D). It does not depend on the choice of F\"

as far as it is radial. We refer to [16] and [3] for more

precise definitions.

Let us extend the M. H. Schwartz construction
to the case where F(") is a stratified r-frame, not
necessarily radial, and defined on V', not necessarily
in M.

Also, if F\") and F{" are two (non-singular)
r-frames tangent to Vo, defined over the (D)%) N
(U — S), the difference cocycle d(Fl(T),FQ(T)) is well
defined in H?P~1(0T) (see [18] §33.3): it is the first
obstruction for Flr) and F,"” to be homotopic over
OT. We denote by dg(F\", F{”) the image of the
class d(Fl(T), 2(T)) by the composition

(%) H*»1(9T) - H>(T,0T)
T H2(T,07) = Har_o(S)

of the connecting homomorphism ¢, the Thom-Gysin
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homomorphism 7 defined by (7(c), o) = (¢,eNV) for
a 2¢g-cell o in (D), and the Alexander isomorphism
A (see [2]).

Definition. The “homological Schwartz class”
EM(F™S) of F() at S is defined in Ha,_2(S;Z)
by the formula

SMF™|S) = M (8) + ds(Fy7, F©™).

In particular
M(E,S) = e (9),
for a radial r-frame Fér).
Proposition 1. For two r-frames Fl(r) and
FQ(T), we have:
M, S) = M (Fy,5) = ds(F7, Fy7).

Theorem C. Assume that F(") exists without
singularity on (V — Usaczsa) N(D)?P. Then we get:

SMV) = D (ia)ec? M (FD, S,)
SaCVo
Y ()M (FD, S,
S CSing(V)
where 1, @ S, — V denotes the natural inclusion

map.

In the situation where S, is included in Vj, we
call ¢3M (F()_S,) the Poincaré-Hopf class of F(") at
Sq, this terminology being the classical one when
is equal to 1.

3-2. Virtual Chern classes and their lo-
calization. We already defined virtual character-
istic classes of V' as the Chern classes ;. (V) €
H?**(V, Z) of the virtual bundle [TM — E]|y € K(V),
so they coincide with the usual Chern classes of V
when V is non-singular.

Recall the exact sequence

0—-TVy—TM|y, — Ely, — 0

over the regular part V) of V. There exists a smooth
vector bundle E/ — V and an integer h > 0, such
that E|y @ E’ is the trivial bundle 6 of rank h.
Then, TM|y @ E’ is an extension of TV, @ 6, to all
of V. Every smooth r-frame F(") tangent to V may
be naturally completed as a smooth (r 4+ h)-frame
of TM|y, @ E'|y, (denoted by (F),w®™)). The vir-
tual class ¢, (V') may therefore be interpreted in the
usual obstruction theory as the first obstruction to
the existence of an (r + h)-frame of TM|y & E'.

Let F(") be an r-frame tangent to Vy, defined
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in particular on the 2p-skeleton 97 N (D)?? of 97T:
According to the usual obstruction theory, such
F(") always exist, and the obstruction to extend
(F™) w™) without singularity inside of 7N (D)2 is
a cohomology class ¢, (F(") S)in H*(T,0T;Z) =
H?"(V,V — S;Z). Tt does not depend on the choice
of E’. Let us denote by ¢, (F(") S) its image by
the composition A o7 (cf (*)).

Proposition 2. For two r-frames Fl(r) and
F(T), we have:

VT (F(T) S) cUiT (Fz(T) S) —d (FI(T’) FQ(T)).

Theorem D. Assume that F(") exists without
singularity on (VfUSanSa) N(D)?P. Then we get:

ST (V)= Y (i) Ty (FD, S0)

SaCVo
+ Z (ia)*clr)i—rl(F(r)vsa)a
SoCSing(V)
where 1o : Sq — V denotes the natural inclusion
map.
For r = 1 and S = {p} an isolated point,

e (v,p) € Ho({p};Z) = Z is the index defined in
[6] if p is a singular point (see §4) and the classical
Poincaré-Hopf index if p is a regular point. This jus-
tifies the terminology of “Poincaré-Hopf class” when
S C W, for every r.

3-3.
Definition. Let F(") be an r-frame, as in 3-1.
We define

pra(V.8) = (<1)" [eny (F©), )

which is in Ho,—2(S;Z).

It follows from Propositions 1 and 2 that the
homology class p,—1(V,S) does not depend on the
choice of the stratified r-frame F("). We shall call it
the “homological Milnor class” of V" at S.

Milnor classes.

MED.S)).

From Theorems C and D we deduce Theorem A
of the introduction. Such a result has been given for
local complete intersections with isolated singulari-
ties in [15] and [19].

Proposition.

(i)  We have pr—1(V,S8)=0 for r > dimc S +1.

(ii) If S is contained in Vy, all the Milnor

classes pr—1(V,S) vanish.

4. The case »r = 1. We already mentioned
(Theorem B of the introduction) that uo(V, S) is the
classical Milnor number, any time that this number
has already been defined. It allows, by the way, to
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define such a Milnor number in more general situ-
ations, for example for local complete intersections
of any codimension, S being not necessarily a point.
The definition of the Milnor number was given

- for isolated singularities by [11], [7] and [8] in
terms of Milnor fiber,

- for hypersurfaces and compact S by [12] in
terms of Euler number of some vector bundle of rank
m over M.

Observe that none of the methods used in these
cases extend to our general situation.

Let us first give a geometric interpretation of
the virtual index defined above. We already know
([9], [15]) that if V' has an isolated singularity at p
and v is a continuous vector field on V, singular only
at p, then c§" (v, p) equals the GSV-index of v at p,
i.e., the Poincaré-Hopf index of an extension of v to
a Milnor fibre of V' at p.

We have a similar interpretation of the vir-
tual index in the case where the variety V has
non-isolated singularities. By Thom’s transversal-
ity, there exists a C* section s’ of £ on M which
coincides with s on the complement of U,U,, in M,
it is transverse to the zero section of E, and it is
homotopic to s. We call the zero set V' of s’ a O
smoothing of V' near Sing(V'). Denote by TrV' the
(real) tangent bundle of V’; if we consider TM and
FE as real bundles, we have the exact sequence,

0— TRV/ — TM|V/ — E‘V/ — 0.

Although V' does not have a complex structure, the
bundles TM|y+ and E|y, are complex vector bun-
dles. Using these, one can use V' to evaluate the
virtual index of the restriction v to V' of a vector
field 9, defined on U, — S, non-singular on U, — S,
tangent to both V' and V’, in terms of the Poincaré-
Hopf index of the restriction v’ of ¥ to V':
Theorem E.
(i) ¢4 (v, S,) is equal to the sum of the usual
Poincaré -Hopf index of v’ inside of V' N
Uy, independently of (V',v').

(i) In particular, c§i" (V) = x (V')

5. Computations. Let S be a non-singular
component of complex dimension ¢ of the singular set
Sing(V) . Let H be an m — £ complex dimensional
submanifold of M, transverse to S at a point « € S.
Thus z is an isolated singular point of V N H in H,
and the Milnor number p(VNH, z) does not depend
on H as long as it is transverse to S.
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Theorem F. In the above situation:
(i) if k =1, we have

:urfl(V; S)
= (—1) oV 1 H, )
- TTH([TS — Bls]) ~ (8]

where ¢!~ ([T'S—E|s]) denotes the £ —r 4+ 1%
Chern class of the virtual bundle [T'S — E|s].
(ii) if £ =r — 1 (k arbitrary),

pr=1(V,8) = (=1)*uo(V N H, ) - [S].

When k£ = 1, a formula conjectured in [21] is
proved in [14], giving the “global” Milnor class of V
(with arbitrary singularities) as the sum of contri-
butions from each stratum of a stratification of V.
The contribution from a non-singular component of
Sing(V) is given as in the formula above.
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