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Trigonal modular curves X+d
0 (N)
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1. Introduction. Let N be a positive inte-
ger, and letX0(N) be the modular curve correspond-
ing to the congruence subgroup

Γ0(N) =
{(
a b
c d

)
∈ SL2(Z)

∣∣∣ c ≡ 0 mod N
}
.

In [8], we have determined the trigonal modular
curves X0(N). Here an algebraic curve is said to
be trigonal if it has a finite morphism of degree 3 to
the projective line P1. According to [8], there are no
non-trivial trigonal modular curves of type X0(N),
that is, X0(N) is of genus at most 4 whenever it
is trigonal. In this article, we determine the trig-
onal modular curves X+d

0 (N) = X0(N)/〈Wd〉 with
1 6= d‖N (in case d = N it is usually denoted by
X+

0 (N)) by an argument analogous to [8]. The main
result is

Theorem 1.
(i) The curve X+

0 (N) is trigonal of genus g ≥ 5
if and only if

N = 122, 146, 181, 227 (g = 5);

N = 164 (g = 6);

N = 162 (g = 7).

(ii) If d 6= N , then X+d
0 (N) is trigonal of genus

g ≥ 5 if and only if

(N, d) = (147, 3) (g = 5);

(N, d) = (117, 13) (g = 6).

Consequently, it turns out that there do exist non-
trivial trigonal modular curves of type X+d

0 (N).
We shall prove this theorem only for X+

0 (N).
This is simply because we prefer to avoid the com-
plexity of description. The argument of the next sec-
tion will of course be applied without modification to
the general case.
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2. Determination of the trigonal modu-
lar curves X+

0 (N). Let X be an algebraic curve
of genus g. If g ≤ 2, then it is trigonal; in fact, it
is sub-hyperelliptic. Also, X is trigonal if it is non-
hyperelliptic with g = 3, 4. On the other hand, any
hyperelliptic curve of genus g ≥ 3 is not trigonal. See
[5] [1] or [8, § 1].

Let W (N) be the group of Atkin–Lehner invo-
lutions on X0(N). All the pairs (N,W ′), with W ′ a
subgroup of W (N), for which X0(N)/W ′ is hyperel-
liptic are determined by [6][7][4]. We record here a
specific version.

Theorem 2. The curve X+
0 (N) has a hyper-

elliptic quotient curve of type X0(N)/W ′ of genus
g ≥ 3, if and only if

N = 60, 66, 78, 85, 92, 94, 104, 105, 110, 120, 126,

136, 165, 171, 176, 195, 207, 252, 279, 315.

In particular, X+
0 (N) itself is hyperelliptic of genus

g ≥ 3 if and only if

N = 60, 66, 85, 104 (g = 3);

N = 92, 94 (g = 4).

Given a non-negative integer g, it is not difficult
to determine the values of N for which the genus
g+(N) of X+

0 (N) is equal to g. Thus we obtain:
Proposition 1. The curve X+

0 (N) is trigonal
of genus g = 3 or 4 if and only if N is in the following
list.
g N

3 58 76 86 96 97 99 100 109 113 127
128 139 149 151 169 179 239

4 70 82 84 88 90 93 108 115 116 117
129 135 137 147 155 159 161 173 199 215
251 311

From now on, we always assume g+(N) ≥ 5,
and N is not in the list of Theorem 2. It is a fact
that every trigonal curve over Q of genus g ≥ 5 has
a Q-rational finite morphism of degree 3 to a ra-
tional curve over Q ([11, Thm. 2.1]). Therefore the
argument of [8, § 3] is applicable. To be precise, fix a
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prime p with p - N and consider the reduction X̃0(N)
of X0(N) at p. Then

Lp(N) :=
p− 1
12

ψ(N) + 2ω(N)hs

gives a lower bound of the number ]X̃0(N)(Fp2) of
Fp2-rational points on X̃0(N) ([12][13]). Here ω(N)
is the number of distinct prime divisors of N , and
ψ, h, s are defined as in [13]. Suppose that X+

0 (N) is
trigonal. Then X0(N) has a Q-rational finite mor-
phism of degree 6 to P1, so we have an obvious upper
bound U

(6)
p (N) = 6(p2 + 1) of ]X̃0(N)(Fp2). Hence

if X+
0 (N) is trigonal, then we must have

(∗) Lp(N) ≤ U (6)
p (N).

Lemma. If N > 335, there is a prime p - N
which does not satisfy the inequality (∗).

The proof is analogous to [8, Lem. 3.2]. The
above lemma implies that X+

0 (N) is not trigonal
whenever N > 335, since in this case g+(N) ≥ 5.
Hence we assume in the following that N ≤ 335. We
first check whether there is a prime p not dividing N
which does not satisfy (∗). This is indeed the case
for

N = 160, 170, 182, 189, 190, 196, 198, 200, 208,

216, 220, 222, 224-226, 228, 230-232, 234,

236-238, 240, 242-246, 248-250, 254-256,

258, 260-262, 264-268, 270, 272-276, 278,

280, 282, 284-288, 290-292, 294-306, 308-

310, 312, 314, 316, 318-330, 332-335.

Next we eliminate the possibility for the follow-
ing values of N by applying [8, Cor. 4.2]:

N = 102, 114, 118, 123, 124, 138, 140-142, 144,

145, 156, 158, 166, 168, 174, 177, 178, 184,

186, 188, 202, 204-206, 210, 213, 214.

Namely, there is an involution γ on X+
0 (N) having

more than 6 fixed points for these N . Here γ can be
chosen so that it is of Atkin–Lehner type except for
N = 144, in which case we set γ = V2W16 (see [4,
§ 2] for notation).

The third step is counting the exact number of
rational points over finite fields. To do this, we em-
ploy the trace formulas of Hecke operators [9][16].
We see that, for the following values of N , there is a
prime p with p - N such that

]X̃+
0 (N)(Fq) > 3(q + 1),

where X̃+
0 (N) is the reduction of X+

0 (N) at p and q
is a power of p.

N = 154, 163, 172, 185, 187, 192, 194, 201, 209,

211, 212, 217-219, 221, 223, 229, 233, 235,

241, 247, 253, 257, 259, 269, 271, 277, 281,

283, 289, 293, 307, 313, 317, 331.

Finally, we apply the method explained below
to determine the trigonality of X+

0 (N) for the re-
maining values of N . The values to be tested are:

N = 106, 112, 122, 130, 132-134, 146, 148, 150,

152, 153, 157, 162, 164, 175, 180, 181, 183,

193, 197, 203, 227, 263.

Let N be one of them. In case N = 180 we
have g+(180) = 10 and it suffices to check the
trigonality of X+

0 (180)/〈W4〉, which is of genus 5
([10, Thm. VII.2][11, Lem. 1.3]). Otherwise we have
g+(N) ≤ 8.

The key of our algorithm is the following funda-
mental

Theorem 3. Let X be a canonical curve of
genus g ≥ 5. Then X is trigonal if and only if
the intersection of all the quadrics passing through
X contains a rational scroll. Furthermore, in this
case X lies on this scroll, and the g1

3 is cut out by
the ruling of the scroll.

For the proof, see, e.g., [1, III, § 3][14]. In
view of the above theorem, we proceed as fol-
lows (cf. [8, § 2]). Let X be a canonical curve of
genus g ≥ 5. Let P be a point of X and let L
be a line through P . After a suitable coordinate
change, we may assume P = (1 : 0 : · · · : 0), so that
L is parametrized as {(u : vξ2 : · · · : vξg)} for some
(ξ2 : · · · : ξg) ∈ Pg−2. Let {Qi}n

i=1, n = (g − 2)(g −
3)/2 be a basis for the quadratic part I2 of the ideal
of X. Since P is a common zero of the Qi, we have
Qi(1, vx2, . . . , vxg) = vF1i +v2F2i, where the Fji are
homogeneous polynomials of degree j in x2, . . . , xg.
Therefore the line L is contained in ∩Z(Qi) if and
only if F1i(ξ2, . . . , ξg) = F2i(ξ2, . . . , ξg) = 0 for
1 ≤ i ≤ n. (Z(F ) stands for the zero set of a homo-
geneous polynomial F .) We thus have

Proposition 2. Notation being as above, X
is trigonal if and only if there is a non-trivial solution
for the system of equations F1i = F2i = 0, 1 ≤ i ≤ n.

Returning to our case, a basis {Qi} for I2 is
easily computed by using modular forms ([15]). It
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turns out that the equations in the proposition
have a non-trivial solution if and only if N =
122, 146, 162, 164, 181, 227; this proves our assertion
(for X+

0 (N)).
3. Plane models. In this section, we give

plane models of the trigonal modular curves X+d
0 (N)

of genus g ≥ 5.
Let X be a trigonal curve of genus g, and let

|D| be a g1
3 on X. It is known that this is the only

g1
3 on X whenever g ≥ 5 ([1, Chap. III, Exer. B-3]).

Note that |K − D| is base-point-free by Clifford’s
theorem. If g = 5, then |K − D| is a g2

5 , and this
linear system realizes X as a plane quintic with one
node. Projecting from this node, we get the g1

3 . Next
set g = 6. Then |K − D| is a g3

7 , so X is repre-
sented as a space curve of degree 7. On the other
hand, every non-singular space curve of degree 7,
not contained in any plane, has genus at most 6.
If Y is one such, with genus 6, then Y lies on a non-
singular quadric Q as a curve of type (3, 4). This
means that one of the rulings on Q cuts out the g1

3

on Y (so Y is trigonal). (For the facts on space
curves used above, see [5, IV, § 6].) Furthermore, if
|D′| is a base-point-free g2

6 on a curve Y ′ of genus
6, then Y ′ is trigonal if and only if the map associ-
ated to |D′| is either a three-fold covering of a conic
(|D′| = |2D|), or a birational map to a plane sextic,
which has a triple point (|D′| = |K −D−P | 6= |2D|

Table I. Trigonal modular curves X+
0 (N) of genus g = g+(N) ≥ 5

N g Plane model of X+
0 (N)

122 5 (t2+2t+2)s3 + t(t2+3t+3)s2 + (t4+3t3+2t2−2t−1)s− t(t+1)(t2+3t+3) = 0

146 5 (t2−3t+3)s3 + (t−1)(t−2)s2 + (t−1)(2t2−7t+7)s− (t−1)(t−2)(t2−3t+3) = 0

181 5 (t−1)s3 + (t3+2t2+t−2)s2 + t(t3−3t−1)s− (t2−t−1) = 0

227 5 (4t2+15t+17)s3 + (3t3+9t2−t−16)s2 + (t4+3t3−t2−2t+6)s− (t3+t2+1) = 0

164 6 (t3+t+1)s3 − (2t4+t3+3t2+3t+1)s2 + (t+1)(t4+2t2+t+1)s− (t2+1) = 0

162 7 (t−1)(t2+t+1)s3 + 3t(t3+t−1)s2 + 3t(t2+1)(t2−t+1)s− (3t5−3t4+t3−3t2+1) = 0

Table II. Trigonal modular curves X+d
0 (N) of genus g = g+d(N) ≥ 5

(N, d) g Plane model of X+d
0 (N)

(147, 3) 5 (t2−t+1)s3 − (t3−2t2+4t−2)s2 + (t4+5t2−3t+2)s− (t3−2t2+t−1) = 0

(117, 13) 6 t(t2+3t+3)s3 − (t+1)(t+3)(t2+3)s− 3t(t2+3t+3) = 0

for some P ∈ X). For more information about curves
of genera 5, 6, see [1][5]. Finally consider the case
g = 7. Then |K − 2D| is a g2

6 , which must be base-
point-free, since otherwise X would be birational to
a plane quintic. We claim that the image of X un-
der the map associated to |K − 2D| is a plane sextic
with a triple point. This can be shown as follows.
Let φ be the map associated to |K − 2D|. Note that
φ cannot be a double covering of a plane cubic, since
X is not hyperelliptic, nor bielliptic. On the other
hand, it cannot be a triple covering of a conic, since
K − 2D is not linearly equivalent to 2D. Thus φ
determines a birational map to a plane sextic. Fur-
thermore, since there is a canonical divisor of the
form 3D + P1 + P2 + P3, P1, P2, P3 ∈ X, this plane
curve must have a triple point, which is the image of
P1, P2, P3.

Let us now display plane models of trigonal
modular curvesX+d

0 (N). In each case, we choose t as
a function of degree 3 such that (t)∞ ≥ P∞, where
P∞ is the cusp at infinity. If we embed the (s, t)-
plane in P2 by (s, t) 7→ (s :t :1), then P∞ = (0 : 1 : 0).
Also, the point (1 : 0 : 0) is a singularity of the given
plane model. When g 6= 6, this is the sole singu-
larity. When g = 6, there is one more, namely,
(1 : 1 : 0) (resp. (0 : 1 : 0)) if (N, d) = (164, 164) (resp.
(117, 13)).
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