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Abstract: We show that there are no stochastically complete minimal submanifolds im-
mersed in Cartan-Hadamard manifolds which lie in a non-degenerate cone type domain.
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Let f be a smooth map from a complete Rie-
mannian manifold to Rn. Omori showed in [10] that
if f is a minimal and isometric immersion and the
sectional curvature of M is bounded below, then
f(M) can not lie inside any non-degenerate cones
in Rn. Non-degenerate cone means such a set as
{x ∈ Rn : (x, ν) > δ‖x‖} for some unit vector ν

and constant δ > 0 where (x, x) is standard inner
product and ‖x‖ = (x, x)1/2.

Baikoussis and Koufogiorgos showed in [1] that
the condition on sectional curvature can be replaced
with one that Ricci curvature is bounded from be-
low. Takegoshi([12]) replaced the curvature condi-
tion with the growth of the volume of a geodesic
ball. He showed that if

lim inf
r→∞

log V (r)
r2

< ∞,

the conclusion is valid where V (r) is the volume of a
geodesic ball with radius r.

All of them showed these results via Omori-Yau
maximum principle.

In this note we show that we can replace these
assumptions with stochastic completeness of the
manifolds and we give a simple proof of a general-
ized result on this problem without using Omori-Yau
maximum principle. We say that a Riemannian man-
ifold M is stochastically complete if∫

M

p(t, x, y)dv(y) = 1 for all x ∈ M,

where p(t, x, y) is a heat kernel of ∂/∂t − (1/2)∆M ,
i.e. Brownian motion on M is conservative. This
means that almost all paths of Brownian motions
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can be extended as their time tends to infinity.
We note that Grigor’yan obtained the following cri-
terion for stochastic completeness ([3]).
Let M be a complete Riemannian manifold and V (r)
the volume of a geodesic ball in M of radius r. If∫ ∞

1

rdr

log V (r)
= ∞,

then M is stochastically complete.
Each of the previous three conditions satisfies this
condition.

We also define a cone type domain of a Rieman-
nian manifold M which is a generalization of Eu-
clidean cone. We call D a cone type domain of M if
there exists a nonnegative unbounded function k on
[0,∞) such that k(d(o, x)) has a concave majorant
on D, where d(o, x) is the distance function from a
fixed reference point o to x on M . If M = Rn, a
non-degenerate cone is a cone type domain. More-
over this class includes domains like

{x ∈ Rn : (x, ν) > k(‖x‖)},

where k is an unbounded function on [0,∞).
Our result is the following.
Theorem 1. Let N be a Cartan-Hadamard

manifold and f a harmonic map from M to N sat-
isfying that

(f∗ξ, f∗ξ) ≥ c for all unit vector fields ξ and
some constant c > 0. If M is stochastically complete,
then f(M) can not lie inside any non-degenerate
cone type domains in N .

We immediately have the following corollary to
the above theorem.

Corollary 2. No stochastically complete min-
imal submanifold immersed in a Cartan-Hadamard
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manifold N can lie inside a non-degenerate cone type
domain in N .

In complex cases the situation becomes slightly
simple.

Corollary 3. No stochastically complete com-
plex submanifolds immersed in Cartan-Hadamard
manifolds can lie inside a domain which has a form
as D={x ∈ N : Re h(x) ≥ k(d(o, x)) > 0} for a holo-
morphic function h on N and an unbounded function
k on [0,∞).

If there exists a non-negative exhaustion func-
tion φ on a Kähler manifold N satisfying a condition
like (∗) in the section 1 below, we can obtain the same
result as this replacing d(o, x) and Cartan-Hadamard
manifold with φ and N .

We remark that it is impossible to eliminate the
assumption of non-degeneracy of cones. In fact we
can give an example of non-flat stochastically com-
plete minimal surface in a half space. Moreover we
will show the following result in a similar manner to
Jorge and Xavier [6].

Proposition 4. There exists a non-flat sto-
chastically complete minimal surface in R3 between
two parallel planes.

We should remark that Kasue showed in [8] a
similar result to our corollary 2 for the case of cylin-
drical domains of Rn instead of cones.

He used the fact that if a minimal submanifold
is inside a cylindrical domain and ζ is the life time of
a Brownian motion on the submanifold, then E[ζ] <

∞. On the other hand if a minimal submanifold is
inside a non-degenerate cone, we may be able only
to check that E[ζ1/2] < ∞. Hence we treated some
different class of stochastically incomplete manifolds.

We also remark that there are no implication
between stochastic completeness and geodesic com-
pleteness. Several related results for geodesicaly
complete minimal submanifolds are known.
P. Jones ([5]), Jorge and Xavier ([7]) gave examples
of bounded complete minimal submanifolds. From
our result we know that such surfaces are stochasti-
cally incomplete. On the other hand Hoffman and
Meeks ([4]) showed, what is called strong half-space
theorem, that a complete properly immersed min-
imal surface in R3 cannot be contained in a half
space, except for a plane. As we will see in the
last section, a properly immersed minimal surface
is always stochastically complete. We can also ob-
tain some similar results on value distribution of

harmonic maps under another stochastic condition,
which will be given in the last section.

1. Proof of Theorem 1. As for stochas-
tic calculus on manifolds and probabilistic notations
used here, we can refer to Emery’s book [2].

We will show a slightly general result than Theo-
rem 1. Let M and N be a Riemannian manifold. As-
sume that N admits a nonnegative C2− class func-
tion φ(x) satisfying the following property.

dφ⊗ dφ ≤ c1φ(x)gN , Hess φ ≥ c2gN .(∗)

We have the following.

Theorem 5. Let f be a harmonic map from
M to N satisfying that gN (f∗ξ, f∗ξ) ≥ cgM (ξ, ξ) for
all vector fields ξ and some constant c > 0. Let
D = {x ∈ N : h(x) ≥ k(φ(x)) > 0} for a con-
tinuous function h on N and an unbounded func-
tion k on [0,∞). If M is stochastically complete and
supt E[h(f(Xt))] < ∞ for a Brownian motion Xt on
M , then f(M) cannot be included in D.

It is easy to check that if N is a Cartan-
Hadamard manifold, then taking φ(x) = d(o, x)2

makes the condition (∗) valid. If a harmonic map
f targets N and h is a concave function on N , then
h ◦ f(x) is a superharmonic function on M . Then
supt E[h ◦ f(Xt)] ≤ h ◦ f(x0) < ∞ for Brownian mo-
tion Xt starting from x0. Therefore we make sure
that the above theorem implies Theorem 1.

Proof of Theorem 5. Suppose that f(M) ⊂
D. Note that the assumption that gN (f∗ξ, f∗ξ) ≥
cgM (ξ, ξ) for all vector fields ξ and some constant
c > 0 implies that

gN (df(X), df(X)) ≥ cgM (dX, dX) = cmdt

becuse if Xt is a Brownian motion on M ,
gM (dX, dX) = mdt with m = dim M ([2]).

supt E[h(f(Xt))] < ∞ implies that there exists
a constant M > 0 such that P (supt k(φ(f(Xt))) ≤
M) > 0.

Recall Ito’s formula of Γ−martingale ([2]) , that
is,

φ(Yt)− φ(Y0)

= B

(∫ t

0

dφ⊗ dφ(dY, dY )
)

+
1
2

∫ t

0

Hess φ(dY, dY ).

By (∗)

dφ⊗ dφ(dY, dY )) ≤ c1φ(Yt)gN (dY, dY )
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and

Hess φ(dY, dY ) ≥ c2gN (dY, dY ).

Law of iterated logarithm of Brownian motion im-
plies that B(

∫ t

0
dφ ⊗ dφ(dY, dY )) fluctuates within

the sides at most of(∫ t

0

φ(Yt)gN (dY, dY ) log log
∫ t

0

φ(Yt)gN (dY, dY )
)1/2

,

which is bounded by

(sup
t

φ(Yt))
(∫ t

0

gN (dY, dY ) log log
∫ t

0

gN (dY, dY )
)1/2

+ a smaller term, as the clock tends to infinity.
On the other hand∫ t

0

Hess φ(dY, dY ) ≥ c2gN (dY, dY ) ≥ const.t.

Hence as t → ∞ the right hand side of the Ito’s
formula for φ(Yt) tends to infinity. This contradicts
that supt k(φ(f(Xt))) < ∞ with positive probablity.

2. Proof of Proposition 4. By Weierstrass
representation theorem of minimal surface(cf.[11]),
to construct minimal immersion from a unit disc to
R3, we may choose two holomorphic functions on a
unit disc satisfying some desirable conditions. In [6]
Jorge and Xavier used this strategy. We use the same
notation as [6]. Let Kn (n = 1, 2, . . . ) be disjoint
compact sets in a unit disc such that each Kn is an
annulus that a small sector is removed from the right
side if n is odd, or from the left side if n is even. Let
Zt be a complex Brownian motion starting from the
origin and τ = inf{t > 0 : |Zt| ≥ 1}. We first note
that since Zt converges to Zτ in the boundary circle
as t → τ a.s, Z will cross all but a finite number of
the Kn of even n’s or all but a finite number of the
Kn of odd n’s a.s. Let No denote this finite random
number.

From their argument in [6] we have only to
construct a confomal metric satisfying a suitable
growth condition to guarantee the stochastic com-
pleteness.

Stochastic completeness of the minimal surface
implies that ∫ τ

0

σ(Zs)2ds = ∞, a.s,

where ds2 = σ(z)2|dz|2 is the induced metric on the
unit disc. Now suppose that ds2 = σ(z)2|z|2 satisfies
that σ(z) ≥ ecn−1 > 0 on Kn. Let dhyp be a hy-
perbolic distance with respect to Poincaré metric on

unit disc. We define a hyperbolic Brownian motion
Y by

Yρt = Zt with ρt =
∫ t

0

4
(1− |Zs|2)2

ds,

for 0 ≤ t ≤ τ .
Let dhyp(o, Yt) = rt. It is well-known that

lim
t→∞

rt

t
= 1 a.s.

Set Sn = min{dhyp(o, x) : x ∈ Kn} and Tn = max{
dhyp(o, x) : x ∈ Kn}. We show that if Kn and cn

satisfy that for some 0 < ε < 1 and δ > 0

Tn

1 + ε
− Sn

1− ε
≥ δ and cn ≥

1 + ε

1− ε
Sn,

then the minimal surface is stochastically complete.
Fix 0 < ε < 1 and for this ε there exists a ran-

dom time 0 < t0 < ∞ such that∣∣∣rt

t
− 1

∣∣∣ < ε for t > t0 a.s.

Set σ̃(dhyp(o, z)) = σ(z).∫ τ

0

σ(Zs)2ds

= const.

∫ ∞

0

σ(Ys)2e−2rsds

= const.

∫ t0

0

+
∫ ∞

t0

σ(Ys)2e−2rsds

≥ const.

∫ ∞

t0

σ̃(rs)2e−2rsds

≥ const.
∑′

e2cn−2

∫ ∞

t0

1[Sn,Tn](rs)e−2rsds

≥ const.
∑′

e2cn−2

∫ ∞

t0

1[Sn,Tn](rs)e−2rsds

≥ const.
∑′

e2cn−2

×
∫ ∞

t0

1[Sn/(1−ε),Tn/(1+ε)](s)e−2(1+ε)sds,

where
∑′ means a summation over all even n’s or

all odd n’s after No. If the condition on cn and Kn

mentioned above is satisfied, the last sum will be
divergent a.s. This completes the proof.

3. Remarks and similar results. As men-
tioned in the introduction, properly immersed min-
imal surfaces have a stronger property than general
minimal sufaces. As for relation between properness
of minimal surface and stochastic completeness, we
have the following fact.
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Proposition 6. A minimal submanifold prop-
erly immersed in Rn is stochastically complete.

Remark. 1. Kasue showed a more general
result([8]) using analytic method. He gave a con-
dition on mean curvature of the surface and sec-
tional curvature of the ambient manifold for stochas-
tic completeness of the surface.
2. We can show the same conclusion for minimal sub-
manifolds properly immersed in Cartan-Hadamard
manifold with lower bounded sectional curvature in
the similar way.

Proof. Let f : M → Rn be a minimal im-
mersion in problem and X Brownian motion on M .
Direct calculation shows ∆Md(o, f(x))2 = const.
Let τr = inf{t > 0 : d(o, f(Xt)) ≥ r}. Then
E[d(o, f(Xτr∧t))2] ≤ const.t. On the other hand
properness implies that τr ↑ ζ (r → ∞) a.s. where
ζ is the life time of Xt. These facts implies that
d(o, f(Xζ∧t)) < ∞ a.s. for 0 < t < ∞. This just
implies stochastic completeness.

We add another type results in this subject us-
ing similar stochastic methods. We can discuss the
relation harmonic maps and Liouville property. The
details will appear elsewhere.

Theorem 7. Let f be a non-constant har-
monic map from a Riemannian manifold M to
Cartan-Hadamard manifold N and D a cone type
domain as in Theorem 1 with k(x) = xp (p > 1).

If M has a Liouville property (i.e. M does
not admit any non-constant bounded harmonic func-
tions), then f(M) cannot be included in D.

Theorem 8. Let f be a harmonic map of finite
energy from a Riemannian manifold M to Cartan-
Hadamard manifold N of lower bounded sectional
curvature. If M has a Liouville property and Brow-
nian motion on M is transient, then f is a constant
map.

This is related to the works by Schoen-Yau and
Kendall [9]. The former treated the case that M

has nonnegative Ricci curvature, N is of non-positive
curvature and f is of finite energy. The latter did
the cases that M has Liouville property and f(M)
is included in a regular geodesic ball. We note that
neither of these three results implies the other.

We also remark that there is no implication be-
tween Liouville property and stochastic complete-
ness.
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