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Abstract:

We show that there are no stochastically complete minimal submanifolds im-

mersed in Cartan-Hadamard manifolds which lie in a non-degenerate cone type domain.

Key words:

Let f be a smooth map from a complete Rie-
mannian manifold to R™. Omori showed in [10] that
if f is a minimal and isometric immersion and the
sectional curvature of M is bounded below, then
f(M) can not lie inside any non-degenerate cones
in R™. Non-degenerate cone means such a set as
{r eR™ : (x,v) > §|lz|} for some unit vector v
and constant § > 0 where (z,z) is standard inner
product and ||z|| = (z,z)"/2.

Baikoussis and Koufogiorgos showed in [1] that
the condition on sectional curvature can be replaced
with one that Ricci curvature is bounded from be-
low. Takegoshi([12]) replaced the curvature condi-
tion with the growth of the volume of a geodesic
ball. He showed that if
log V (1)

lim inf 5
r

™—00

< 00,

the conclusion is valid where V (r) is the volume of a
geodesic ball with radius r.

All of them showed these results via Omori-Yau
maximum principle.

In this note we show that we can replace these
assumptions with stochastic completeness of the
manifolds and we give a simple proof of a general-
ized result on this problem without using Omori-Yau
maximum principle. We say that a Riemannian man-
ifold M is stochastically complete if

/ p(t, 2, y)do(y) = 1
M

where p(t,x,y) is a heat kernel of 9/0t — (1/2)Ay,
i.e. Brownian motion on M is conservative. This
means that almost all paths of Brownian motions

forall =€ M,
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can be extended as their time tends to infinity.

We note that Grigor’yan obtained the following cri-
terion for stochastic completeness ([3]).

Let M be a complete Riemannian manifold and V (r)
the volume of a geodesic ball in M of radius r. If

/°° rdr o
1 logV(r) ’

then M is stochastically complete.
Each of the previous three conditions satisfies this
condition.

We also define a cone type domain of a Rieman-
nian manifold M which is a generalization of Eu-
clidean cone. We call D a cone type domain of M if
there exists a nonnegative unbounded function & on
[0,00) such that k(d(o,z)) has a concave majorant
on D, where d(o,x) is the distance function from a
fixed reference point o to x on M. If M = R", a
non-degenerate cone is a cone type domain. More-
over this class includes domains like

{z e R": (z,v) > k([lz|)},

where k is an unbounded function on [0, c0).
Our result is the following.

Theorem 1. Let N be a Cartan-Hadamard
manifold and f a harmonic map from M to N sat-
isfying that

(f+&, fx&) > ¢ for all unit vector fields & and
some constant ¢ > 0. If M is stochastically complete,
then f(M) can not lie inside any mon-degenerate
cone type domains in N.

We immediately have the following corollary to
the above theorem.

Corollary 2. No stochastically complete min-
imal submanifold immersed in a Cartan-Hadamard
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manifold N can lie inside a non-degenerate cone type
domain in N.

In complex cases the situation becomes slightly
simple.

Corollary 3. No stochastically complete com-
plex submanifolds immersed in Cartan-Hadamard
manifolds can lie inside a domain which has a form
as D={z € N : Re h(x) > k(d(o,z)) > 0} for a holo-
morphic function h on N and an unbounded function
k on [0,00).

If there exists a non-negative exhaustion func-
tion ¢ on a Kéhler manifold N satisfying a condition
like () in the section 1 below, we can obtain the same
result as this replacing d(o, z) and Cartan-Hadamard
manifold with ¢ and N.

We remark that it is impossible to eliminate the
assumption of non-degeneracy of cones. In fact we
can give an example of non-flat stochastically com-
plete minimal surface in a half space. Moreover we
will show the following result in a similar manner to
Jorge and Xavier [6].

Proposition 4. There exists a non-flat sto-
chastically complete minimal surface in R3 between
two parallel planes.

We should remark that Kasue showed in [8] a
similar result to our corollary 2 for the case of cylin-
drical domains of R"™ instead of cones.

He used the fact that if a minimal submanifold
is inside a cylindrical domain and ( is the life time of
a Brownian motion on the submanifold, then E[(] <
00. On the other hand if a minimal submanifold is
inside a non-degenerate cone, we may be able only
to check that F[¢'/?] < co. Hence we treated some
different class of stochastically incomplete manifolds.

We also remark that there are no implication
between stochastic completeness and geodesic com-
pleteness. Several related results for geodesicaly
complete minimal submanifolds are known.

P. Jones ([5]), Jorge and Xavier ([7]) gave examples
of bounded complete minimal submanifolds. From
our result we know that such surfaces are stochasti-
cally incomplete. On the other hand Hoffman and
Meeks ([4]) showed, what is called strong half-space
theorem, that a complete properly immersed min-
imal surface in R? cannot be contained in a half
space, except for a plane. As we will see in the
last section, a properly immersed minimal surface
is always stochastically complete. We can also ob-
tain some similar results on value distribution of
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harmonic maps under another stochastic condition,
which will be given in the last section.

1. Proof of Theorem 1. As for stochas-
tic calculus on manifolds and probabilistic notations
used here, we can refer to Emery’s book [2].

We will show a slightly general result than Theo-
rem 1. Let M and N be a Riemannian manifold. As-
sume that N admits a nonnegative C?— class func-
tion ¢(x) satisfying the following property.

(*)  do®@dp < c1d(z)gn,

We have the following.

Hess ¢ > cogn.

Theorem 5. Let f be a harmonic map from
M to N satisfying that gn (f.€, £.€) > cqui(€,€) for
all vector fields € and some constant ¢ > 0. Let
D ={zx € N : h(z) > k(¢(x)) > 0} for a con-
tinuous function h on N and an unbounded func-
tion k on [0,00). If M is stochastically complete and
sup; E[h(f(X}y))] < oo for a Brownian motion X, on
M, then f(M) cannot be included in D.

It is easy to check that if NV is a Cartan-
Hadamard manifold, then taking ¢(z) = d(o,z)?
makes the condition (%) valid. If a harmonic map
f targets N and h is a concave function on N, then
h o f(zx) is a superharmonic function on M. Then
sup; Elho f(X;)] < ho f(xp) < oo for Brownian mo-
tion X; starting from xy. Therefore we make sure
that the above theorem implies Theorem 1.

Proof of Theorem 5. Suppose that f(M) C
D. Note that the assumption that gy (f.&, fi&) >

cgm(§,€) for all vector fields ¢ and some constant
¢ > 0 implies that

gn (df(X),df (X)) > cgn(dX,dX) = emdt

becuse if X; is a Brownian motion on M,
gm (dX,dX) = mdt with m = dim M ([2]).

sup, E[h(f(X:))] < oo implies that there exists
a constant M > 0 such that P(sup, k(o(f(Xy))) <
M) > 0.

Recall Ito’s formula of I'—martingale ([2]) , that
is,

o(Yy) — 6(Yo)
=B (/Otdqb ® do(dy, dY)) + ;/Ot Hess ¢(dY, dY).

By ()

d¢ @ dp(dY,dY)) < c1(Yy)gn (dY, dY')
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and
Hess ¢(dY,dY) > cogn(dY,dY).

Law of iterated logarithm of Brownian motion im-
plies that B(fot d¢ @ dp(dY,dY)) fluctuates within
the sides at most of

1/2

( /O t¢(Yt)9N(dY, dY)loglog /O t¢>(yt)gN(dK dy)) 7

which is bounded by

o) [ g (dY.dY)loglog / o (dy. dY))m

+ a smaller term, as the clock tends to infinity.
On the other hand

¢
/ Hess ¢p(dY,dY) > cogn(dY,dY) > const.t.
0

Hence as t — oo the right hand side of the Ito’s
formula for ¢(Y;) tends to infinity. This contradicts
that sup, k(¢(f(X:))) < oo with positive probablity.

2. Proof of Proposition 4. By Weierstrass
representation theorem of minimal surface(cf.[11]),
to construct minimal immersion from a unit disc to
R?, we may choose two holomorphic functions on a
unit disc satisfying some desirable conditions. In [6]
Jorge and Xavier used this strategy. We use the same
notation as [6]. Let K, (n = 1,2,...) be disjoint
compact sets in a unit disc such that each K, is an
annulus that a small sector is removed from the right
side if n is odd, or from the left side if n is even. Let
Z; be a complex Brownian motion starting from the
origin and 7 = inf{t > 0 : |Z;| > 1}. We first note
that since Z; converges to Z, in the boundary circle
as t — 7 a.s, Z will cross all but a finite number of
the K,, of even n’s or all but a finite number of the
K,, of odd n’s a.s. Let N, denote this finite random
number.

From their argument in [6] we have only to
construct a confomal metric satisfying a suitable
growth condition to guarantee the stochastic com-
pleteness.

Stochastic completeness of the minimal surface
implies that

/ 0(Z)%ds = o0, a.s,
0

where ds? = 0(2)?|dz|? is the induced metric on the
unit disc. Now suppose that ds? = o(2)?|z|? satisfies
that o(z) > e»~! > 0 on K,,. Let dpy, be a hy-
perbolic distance with respect to Poincaré metric on
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unit disc. We define a hyperbolic Brownian motion
Y by

t
4
Y K = 7, with = —  d
=it = | G

for0<t<r.
Let dpyp(0,Yy) = 7. It is well-known that

Set S, = min{dpyp(0,) : © € K,,} and T,, = max{
dhyp(0,2) + © € K,}. We show that if K,, and ¢,
satisfy that for some 0 < e <1 and 6 >0

T, Sh 1+e€

- >0 dn>7sna
1+e 1—€— anc¢ ~1—c¢

then the minimal surface is stochastically complete.
Fix 0 < € < 1 and for this € there exists a ran-
dom time 0 < ty < oo such that

for t > tg a.s.

r
—t—l‘<e
t

Set & (dnyp(0, 2)) = 0(2).

/OT o(Zy)?ds

:const./ o(Yy)%e " =ds
0

t[) oo
:const./ +/ o(Yy)2e ?ds
0 to

> const./ G(rs)?e ?"=ds

t

0
’ oo
> const. eQC"_z/ Lis, 7. (rs)e > ds
to

’ o}
2 const.z 626"_2/ Lis,, 1) (rs)e > ds

to

> const.z e2en—2
x/ 1[Sn/(1—e),Tn/(1+€)](8)6*2(1+6)8d8’
to

where S means a summation over all even n’s or
all odd n’s after N,. If the condition on ¢, and K,
mentioned above is satisfied, the last sum will be
divergent a.s. This completes the proof.
3. Remarks and similar results. As men-
tioned in the introduction, properly immersed min-
imal surfaces have a stronger property than general
minimal sufaces. As for relation between properness
of minimal surface and stochastic completeness, we

have the following fact.
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Proposition 6. A minimal submanifold prop-
erly immersed in R™ is stochastically complete.

Remark. 1. Kasue showed a more general

result([8]) using analytic method. He gave a con-
dition on mean curvature of the surface and sec-
tional curvature of the ambient manifold for stochas-
tic completeness of the surface.
2. We can show the same conclusion for minimal sub-
manifolds properly immersed in Cartan-Hadamard
manifold with lower bounded sectional curvature in
the similar way.

Proof. Let f : M — R™ be a minimal im-
mersion in problem and X Brownian motion on M.
Direct calculation shows Ajsd(o, f())? = const.
Let 7. = inf{t > 0 : d(o, f(X:)) > r}. Then
Eld(o, f(X;.at))?] < const.t. On the other hand
properness implies that 7. T ¢ (r — o) a.s. where
¢ is the life time of X;. These facts implies that
d(o, f(X¢at)) < o0 as. for 0 < t < oco. This just
implies stochastic completeness.

We add another type results in this subject us-
ing similar stochastic methods. We can discuss the
relation harmonic maps and Liouville property. The
details will appear elsewhere.

Theorem 7. Let f be a non-constant har-
monic map from a Riemannian manifold M to
Cartan-Hadamard manifold N and D a cone type
domain as in Theorem 1 with k(z) = 2P (p > 1).

If M has a Liouville property (i.e. M does
not admit any non-constant bounded harmonic func-
tions), then f(M) cannot be included in D.

Theorem 8. Let f be a harmonic map of finite
energy from a Riemannian manifold M to Cartan-
Hadamard manifold N of lower bounded sectional
curvature. If M has a Liouville property and Brow-
nian motion on M is transient, then f is a constant
map.

This is related to the works by Schoen-Yau and
Kendall [9]. The former treated the case that M
has nonnegative Ricci curvature, N is of non-positive
curvature and f is of finite energy. The latter did
the cases that M has Liouville property and f(M)
is included in a regular geodesic ball. We note that
neither of these three results implies the other.
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We also remark that there is no implication be-
tween Liouville property and stochastic complete-
ness.
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