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Orbits of triangles obtained by interior division of sides
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Abstract: Plane triangles are classified by similarity. Let £ be the set of these equiva-
lence classes of triangles, and [ABC] € Q be the class of triangles which are similar to
AABC, Putting x = LA, y= £B,z= £LC, [ABC] is represented by a point in II =
{((x,y,2)|lc+y+z=m, x,y, z> 0}. By making interior division of sides of AABC, we

define an orbit in II, starting from [ABCI].

It is determined by a differentiable dynamical

system, and is the intersection of Il and the surface cotx + coty + cot z = const.
Key words : Triangles ; interior division ; convex closed curve ; four-vertex theorem.

1. Introduction. We consider here the set
T of all triangles on the Euclidean plane. Triang-
les in T are classified by similarity. In this note,
we say that AABC is similar to 4A’B’C’ and
write as AABC = AA’'B’C’ if LA= LA, LB
= 4B, LC = ZC’. 1t defines an equivalency.
Put
(1.1) [ABC] ={AAB'C’'|AAB'C’ = AABC)}
Obviously [ABC]1 N [A’B’C’'] # @ if and only

if [ABC] = [A’B’C’]. We define
(1.2) 2= (T/=)={[ABC]|4ABCE T}.
Note that, in general, [ABC], [BCA], and

[ CAB] are mutually distinct in £.

Write ZLA=x, £LB=y, £LC =2 then
[ABC] is represented as a point in R’ Qs ide-
nified with the set
(1.3) N={(x,y,2|z+ty+tz=7,2>0,9>0,2>0}.
The class of regular triangles is denoted by a
point (x/3, n/3, ©/3). Points on the boundary
of II denote degenerate triangles. A point in II
corresponding to [ABC] is denoted also by
[ABC].

Consider a triangle AABC € [ ABC]. On
each side of it, take the point of interior division
with the ratio #: (1 — ¢), where 0 = ¢t = 1. The
point on the side AB is denoted by A(#). Similar-
ly for B(¢) and C(¢) on BC and CA, respective-
ly. Put

(1.4) T,(ABC) = {[A(H)B(t)C()]|0=t=<1).
T,(ABC) is represented by a continuous arc in
I1 € R® which connects [ ABC1 with [ BCA].
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Obviously T, (ABC) U T, (BCA) U T, (CAB)
is a closed curve in II. Since B=A@1), C =
B@1),A=C @), we may define [A QA +¢)
BA+H)CA+n],0=t=1,as[BEGHCEHA
@#)],0=t=1. Similarly [A(2+¢t)B (2 +
t)C(2+ t)] may be defined as [C (t)A (#)B
(t)]. Now for any ¢t € R, let [#] be the greatest
integer not exceeding f Writing t* = ¢t — [¢], 0
= t* < 1, we define

[A(t*)B( * ()],

(1.5) if [t] = 3m + 0 for some integer m,
(B (t*)C(t*)A(t*)],

[ABBHOC®] = if [t] = 3m + 1 for some integer m,
[CEHAWE) B(t9)],

if [t] = 3m + 2 for some integer m.

For example, if —1 < ¢<O0, then [t]=—1=

—3+2 and t*=1—|t|. Hence [ A (t)B (t)

cCWHl=[ca—-ithaa—1thBQa —[tP1. By

(1.5), we define as a continuation of (1.4),
(1.6) T(ABC) = {[A@)B#)Ct)]1|t€ R},
which is represented by a closed curve in IL.

There are some investigations on triangles
obtained by interior division of sides of AABC,
e.g. [4]. However, as far as 1 know, we have
almost no knowledge about the set T(ABC), ex-
cept the case when ¢t = 1/2, where 4B(1/2)C(1/
2)A(1/2) = AABC.

In this note we investigate the set T(ABC).
Establishing some lemmas on 2 X 2 matrices, we
will see that T (ABC) is a continuously diffe-
rentiable curve, and find the system of differen-
tial equations which determines the curve. It
shows that T(ABC) is a convex curve, repre-
sented by the intersection of II and the surface
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cot x + cot y + cot z = const. (1—15* t* )
= 3m +
2. Some lemmas. Since £ is identified —* 1—=2t%) if [t]=3m +0,
with the set II € R® we can introduce naturally _ ( —t* 1—2t*) . _
a topology in Q. (21) M@®) = 2t —1 t*—1 I =3m+1,
The proof of the following lemma is easy and (Zt* -1 t*— 1) _
may be omitted. 1—¢* t* it [t) =3m +2.
Lemma 2.1. Triangles AABC and AA (t) By (2.1) we have for 0 = ¢t = 1,
B(t) C(t) share the center of gravity in common for M@3m —t)
any L. =MBm—-1D+2+1—-1))=M2+10-1),
Take a Cartesian coordinate system. We may 2.1 M@Bm—1-t)
suppose that the center of gravity of AABC is at " =MBm—-1D+1+0-t)=MQA+Q0-9),
the origin. Put the coordinates of the vertices to M@Bm—2-1)
be A = (a,, a,), B = (b, b,), then we have C = =MQ@Bm—-1+ 1 —1)=M1-1).
(¢, ¢;) = (—a, — b, —a,—b,). Then we get Lemma 2.2. Suppose that 0 = s, t = 1.

by an easy calculation, for 0 £ t = 1,

A) = (1 —ta, +tb, 1 —t)a,+ tb,),
B(t) = (1 = t)b, + tc;, (1 = t)b, + tc,)

= (—ta,+ (1 —26) b, — ta, + (1 — 20)b,),
Ct)=(Q—t)e +ta, A—1t)c,+ ta,)

which is written as

Db, @t—1Da,+ (t—1)b,),

(A(t))

B(t)

=< 1—8)a, + 1 1—18)a, + tb, )
—ta,+ QA —28)b, —ta,+ (1—28)b,

_(1—t t a, a,

'"( —t 1—2t>(b1 bz)’
since 4A(t)B () C(t) is determined by A(¢) and
B(t). For AAQ +)BA+8CQ +1t) =A4B

#)CH)A(), 0=t =1, we have
A(L+¢t)=B(t) = (1 — )b, +te, A =1)b, + k)
= (~ta, + (1= 2t)b,, — ta, + (1 - 2t)b,),
B +1)=C@) = (1= t)e,+ tay, (1= t)e, + tay)
=(@2t=Da, + (t= Db, 2t—Da, + (t—1)by),
hence
AQ + 1)\ _ —t 1—2t\(a, a,
<B(1+t)>— <2t—1 t—1 )(b, b2>'

Similarly we have for AA (2 + ¢t)B (2 +¢)
C@2+1t)=A4CHHBMAG@),0=t=1,

AC+1t)=C@t)=((1—t)e, + ta, A =), + ta,)
= (@2t—1a, + (t— Db, 2t—1)a,
+ (t— Dby,
B@+1t)=A@t)= (A —t)a, +th, 1 —t)a,+ b)),
and
A2+ 1t)\ _(2t—1 t—1\(a, a,
<B(2+t)>—< 1—¢t ¢t ><b1 b2>'

We define a matrix M(¢), t € R, as follows: Let
t*=¢t—[1t],0=1¢t*<1 where [t] is the
greatest integer not exceeding ¢,

(i) If s+t = 1, then
MG)ME) = M@Q2+ s)MQ1 + ¢)
=MQA+s)M@2+1t)=L(s, t)MKk),
MO+ M@ =MGE)MA +¢t)
=MQ2+s)MQ2+1¢t)=L(s, t)YMQ + k),
MQA+sMQA+1t)=MQ2+ s)M(t)
=MEMQ+t)=L(s, )MQ2 + k),

s+ t— 3st
1 — 3st ’

(2.2)

where
(2.2 L(s, t) =1 — 3st,
(i) If1 < s+ t= 2, then
MOME) =MQ+s)MQA +1¢)
=MA+sMQ2+1¢t)=LG, )MQA + k),
MA+9ME) =MMQI +¢)

k =

(2.3) =MQ+s)MQ@+1) =L(s, DM@ +§),
MQ+9MQ+H)=MQ+sM@)
=ME)M@+¢t) = L(s, t) M),
where
(2.3) L(s,t)=1—-31—s1—1),
e 1=+ =0=30-90~1

1-30—sQ—1¢)
Proof. We prove only for M(s) M (¢). Other
cases are similarily proved. Obviously

M(s)M ()

( 1—s—1t s+ t— 3st >
—s—t+3st 1—2s— 2t+ 3st/°

(i) Note that 1 — 3st = t+ s —3st= (t+ s) —
%(s+t)z+%(s—t)2>0 if 0<s+¢t=1

From
1—s—t=LA—k),t+s— 3st= Lk,
1—2s—2t+3st=LQA — 2k),
we obtain the result.
(ii) Since 0 =1 —s,1—¢t=1, we have (1 —s)
+ (@ —1%) =1. From
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l1—s—t=—Lk,s+t—3st=LQA — 2k),
1—2s—2t+3st=L(k—1).
we obtain the result.
For the inverse matrices we have, by easy
calculations.
Lemma 2.3. Forany 0 =t = 1, we have

(MO =————me+a-n
3—3t+1
- M,
3tT—3t+1
ML+H"=—; : +1M(1+(1—t>)
(2.4) A 1
= —————M(-1-1),
3t —3t+1
M@+ = ————M1 - 1)
3t"—=3t+1
-— L ye2-n.
' 3 —-3t+1

In connection with (2.2’), we consider the
functional equation

_.|_ —_
2.5) ¢+ D) = ¢(a) + ¢() — 3¢(0) (1)

1 — 3¢(a)p(7) ’
0o, 7=1.

Put 0 = 0. Since 3¢ (r)* — 3¢ () + 1 # 0, we
have that ¢ (0) = 0. Differentiating with respect

to 0 and puting 0 = 0, we obtain

% =¢ 0By’ —3y+ 1), y=¢®.

Using ¢ (0) = 0, requiring that ¢ (1) = 1, we
obtain as a solution of (2.5)

2 tan(z?no)
(2.6) ¢,(0) = o7
V3 +3 tan(‘3—o)
2 sin(%za)
= , 0 < o < 1,
V3 cos (2320) +3 sin(zTna)
by taking ¢’,(0) =4r 3/9 =2.4184...,

#,(0) satisfies (2.5)if0 <0, 7,0+ 7=1.
For any 0 € R we define
(2.6") ¢(0) = [o]l + ¢y(c — [a]).
It is easy to see that ¢(0) is strictly monotone in-
creasing and satisfies

(2.6") ¢(0) =0, ¢(—;—) = % (1) =1,
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For any s € R let s* = s — [s], s* = ¢(0%), 0
= ¢o* < 1. Putting 0= [s] + o*, we get s=
¢ (0). Note that the function ¢ (o) defined by
(2.6") is of the class C' but not of C*.

Put
(2.7) K(o) = M(¢(a),
for 0 € R. Write

s= ¢(0) = [s] + s*, t= ¢() = [#] + ¢*,

0 < s*, t* <1, s* = ¢(0%), t* = ¢(z*).
If s*+ t* =1, then we see that o* + ¥ =1
by (2.6”). Using (2.1) and (2.1°), we get from (2.2)
and (2.2’) that, by (5.5),
(2.8) K(o0)K(r) = L(s*, t*)K(c + 1),
where L (s*, t*) is the constant in (2.2’). Note
that ¢ (o) satisfies the functional equation (2.5)
only when 0 = 0, 7, 0 + T = 1, not for general 0,
TE€ R.

Now we consider (2.3) and (2.3’). For 0 = s,
t=1,s+t>1 weput l—s=¢(0),1—1¢
= ¢(T’) and consider the equation, in connection
with (2.3’),

2.5 ¢lo’+ 1)

_ @) + @) — 3¢ () ()
- 1 — 3¢a) () ’

00,7 =1.

2tan (—2320’>

V3 +3 tan<2—;—a’>

Put 0 = 1 — ¢’. Then, using the addition formula
of the tangent function
; 2r 27 )
V3 + tan(? 30
2r_ 2m )

\/§+3tan(—3—— 30

2 tan(%na)

) \/§+3tan(%7£)

Since s+ ¢t>1, we have 1 —s)+ 1 —¢)
< 1. As in (2.6") we see that ¢’ + 7/ < 1. Thus
c+r=Q0Q—0)+ A —17) >1 By (2.9), for
0<ot+tr—1=1,
1—¢@+7)=1—¢2— (c+ 1)
=1—¢Q—-—(c+7—1)) =¢(c+7—1).
By (2.6")weget,if 0 =0, 7=1,0+ 7> 1,

As in (2.5) we obtain

@) =

(29 1—-¢(1—-0)=

= ¢(0).
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plo+7)=1+¢(c+7—1)
=1+ A — ¢+ 1)).
By (2.7) we obtain K(c+ 1) = MQA + ¢(c+ 7
— 1)) in this case. Therefore, using (2.1) and
(2.1’), we see from (2.3) and (2.3") that (2.8)
holds also for the case s* + t* > 1. Noting (2.4)
we see that (2.8) holds for any o, T € R.

Lemma 24. Let M (t), ¢ (6), K(0) be de-
fined by (2.1) —(2.1°), (2.6) —(2.6’), and (2.7), re-
spectively, then we have

K(0)K(7r) = const. K(c + 1), 0, T € R.

3. Orbits of triangles obtained by interior di-
vision of sides. We have defined triangles
AA()YB({t)C(t), t € R, from the original AABC
by interior division of sides. Their equivalence
classes [A(#)B(t)C(t)] are represented by the
matrices M(¢) in (2.1). M(¢) may be replaced by
K(z) = M(¢(2) in (2.7).

The class [A)B@)C@#)] = [A(¢(7))B
(¢ (£))C (¢ (£))] is represented by the point
p(z) = (x(7), y(v), 2(z)) in the set II in (1.3).
We write the point p(7) as

p(t) = T (r, [ABC]), denoting that it has

originated from 4ABC.
Then T (o, [A({)B(#)C(t)]) denotes the class
of triangles obtained from A4A (¢)B (¢)C (¢), in
place of AABC, by interior division of sides with
the ratio s: (1 — s), s = ¢(0) € [0, 1). Since a
const. multiplication does not alter the similarity
of triangles, we obtain, by Lemma 2.4 :

Theorem 3.1. With the wnotations
above, we have

T(o, T(r, [ABC])) =Z(oc+ 7, [ABC)), o,

T€ R, T, [ABC]) = [ABC].
Thus T (z, [ABC]) forms a 1-parameter group,
hence defines a dynamical system.

The set T(ABC) in (1.6) is the trajectory of
T (r, [ABC]), which is a simple closed curve. If
T(ABC) N T(A'B’C’) # @, then T(ABC) =
T(A'B'C).

The interior of the set Il in (1.3) is filled up
with these closed trajectories T(ABC).

Suppose 0 = ¢ = 1. The angles ZA(¢) and
ZA (1 + t) at the vertices A (¢), A (1 + ¢t) of
AA(#)B(@)C(t) and AAQ1 + )BA +1)CA +
t), respectively, are given by

_f)
(3.1) cos(LA®)) = TOREY
fa+1t
g1 +8)h@ +¢t)’

stated

cos(LAQ + 1)) =
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in which we put, writing p = af + ai, q=
+ ab,, ¥ = b; + b,

f(t) =A@)B(t)-A(t)C(¢)
=@Q-30p— O —9t+1)g+ Bt—1)r,

o(8) = [ADBQ)| =p+ 26t — g + Gt — ',
W) = [AOCH| =Bt — 2% — 23t — g+ 7,

and
fA+t) =40+ BA+1)-AQ+1)CA+1)
=@t—Dp+ OF —3t— Dg+ 9* — 9t + 2)r,

g +1) =[A0+ HBI F 1)

=/Bt= 1%+ 208 — 9 + 2 + Gt — 2’7,
h1+1) = A0+ HCAF 1)

=/p+ (6t—2)g+ O — 6t + D)7,

ab,

Then
. @) . ffa+t)
M iy T T <6
. g @) . g@Q+t)
tlj{!_lo g(t) B :l_l.rqr-lo g1 +1¢) 3
i W) I QA +t) 3
e k) T M RA D T
Since
OO0,
Elog cos(LA()) = f(t) g(t) n)
%log cos(ZA(1 + 1))
A+t g+t) KA+t

T+ g+ n " h@Fo

and lim,_,_, cos(£LA(#)) = lim,_ ,cos(LAQ1 +
t)), we obtain that

lim %cos(lA(t)) = lim %cos(éA(l +1)).

t=1-0 =40
Similarly
lim icos(ﬁA(l +¢)) = lim icos(éA(Z +1)),
t—1-0 =s0 Gt
fm - cos(ZA@ + 1)) = lim - cos(ZA(1)).
t=1-0 dt 1=+0 01

Thus we know that ZA (t),t€ R, is con-
tinuously differentiable. Note that the side length

JA@#)B(#)| is not so at t=10, £ 1, £2, .. ..
Similarly for £ZB(t) and £ C(%).

Since the equivalence class [A(#)B(t) C(¢)]
=% (r, [ABC1),t= ¢ (), is represented by
the point (x(7), y(7), 2(7)) = (LA@®), £LB(@)),
£ C(t)), we obtain the following theorem :

Theorem 3.2. The dynamical system T (z,
[ABC]) is continuously differentiable.
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Now we will obtain the system of differential
equations for £(z, [ABC1]). Since

Fd&z(r+ o, [ABC]) =a‘-i;$(z'+ o, [ABC])

— %%(o, T(z, [ABC1)),

we get, by taking ¢ = 0,
d
(3.2) ES(T, [ABC])
d
= 2520, Tz, [ABCD) loep-

d
We will find =% (g, [ABC]) |, Using the
same notations as above, we get by (3.1)

(3.2)) icos(AA(t)) li—o

dt
_ 27@pr — ¢") (b +2p)

(p— 2+ »"*Up + 4q+ P**
By arLglementar_Lcalculation, writing a = |B_C"|,
b= |CA|, ¢ = |AB],
a2=p+4q+4r, b2=4p+4q+r, cz=p—
2q + 7, hence
p= —;—(— a’ + 20 + 26,

1

q= —1§(a2 + b —5¢%), r= %(2(12 — b+ 2¢%.
Write a = sin(£LA), 8= sin(£LB), yr = sin(£LC).

Using the sine theorem: a/a=b/B=c/7, we
have by (3.2)

d
(3.3) CY%ZAU) li=o

_ (.32 _ 7’2) (o _|_B4 + 7,4 _ 2,3272 _ zrzaz _ 2012,82)
4!337’3 *

Hence by (3.2) and (3.3), substituting 44 (¢)
B (t)C (t) for AABC, we obtain the required
system of differential equations. Writing # =
sinz(r), v =siny(r), w = sin z(z), where (x
@, y(), 2(r)) = (LAQ®), LB@#), LC@)), ¢t
= ¢(7), we get, with ¢’(0) = (4my/3)/9,

& g0
O =)'+ o' + 0t - 2% - 20'’ — YY)
dur’n’
=4’ - w")S,
(3.4) %—=¢'(o) ( )S
W =)+ o' ' - 205" - 20' — ™)
o'y’
=0’ w’ - u)S,

[Vol. 74(A),
dz
e (0)
= o) '+ o'+ w' - 20" - 20"’ - 2™
by’
= '’ - 1),
where # = sinx, v = siny, w = sin 2 and
(3.4) S=Su,v, w
_dr w0t et — 20" — 20’ - 2u’y’
3v3 4 ’w’ '

Since uvw # 0 in II, and a trajectory of (3.4) re-
mains in II if it starts at a point of the same set,
we know by [2, p. 34, Theorem 8.1] that

(3.5) T (r, [ABC]) is analytic with respect to
T.

We note that ¢t = ¢(z) is a C' (but not C?% func-
tion of 7.

The only fixed point of (3.4) in Il is u = v
= w, that is x = y = z = n/3. Further in (3.4),
if we change v and w (hence y and 2) and 7 to —
7, we obtain the same system. Hence the trajec-
tory is symmetric with respect to the plane ¥y — z
= 0. Similarly for z— x = 0, x — y = 0. There-
fore we have, identifying T (¢, [ABC]1) with its
trajectory T(ABC).

Theorem 3.3. Trajectory T (r, [ABC]) is a
closed curve which is symmetric with respect to the
planes y —2=0,z—x=0,x—y = 0. There-
fore it encircles the point (n/3, w/3, n/3).

It degenerates to one point if and only if AABC
1s a regular triangle.

Note that, for the system (3.4), the eigenva-
lues at the fixed point (n/3, n/3, n/3) are 0
(with eigenvector orthogonal to II) and pure im-
aginary numbers.

Now we will show the trajectories are con-
vex. Put p(r) = T (z, [ABC]). Since p(7) is a
plane curve on II, its curvature k(7) is given by

p(0) X $(2)

(3.6) 3
[p ()]

k(7) = the component of
orthogonal to II,
where ° denotes differentiation with respect to 7.
If we would prove that £(z) > 0, then the trajec-
tory p(7) should be known to be convex. [1]
Since § ='(1, 1, 1) is orthogonal to II, we
aim to show that

e Xb(r))'f)=§. Z|+\§ ‘;Mfc §|>0.

Consider the system (3.4). Put, with # = sinx, v
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= sin y and w = sin 2,
X=ud"W—w), Y=0"w" —
Z=w'’— ).

Then, with S = S(u, v, w) in (3.4"),

v z'|=| YsS ZS ‘

g Z YS+ YS ZS+ ZS

2
u’),

= | § ;\ (S, v, )’

hence it suffices to see positiveness of

Y Z Z X XY '
K=..+..‘+..‘ v, W)
(YZ P XY)(S(uvw))
By an easy calculation we see
iYZ ZX| !X Y\
Y Z Z X XY

= 2(u(w® — VHuv’w® + v’ — wulow’
+ w(® — u)u’v’w).
Since # = cos x X etc., we obtain by (3.4)
(3.7) K= —6u’v*w’F(z, y, 2) (S, v, w))®,
where
F(z,y, z) = cos z(v® — w*)’u + cos y(w’* —
)20 + cos z(u® — v*)’w
= cosxsinx (sinzy — sin’z)® + cos ysiny
(sin® z — sin’ )® + cos z sin z(sin® z — sin® y)*.
First we note that #, v, w > 0 and ¥ £ v £
w * 0 for (x, y, 2) € II. Hence
w4 o'+ w' = 20" — 20"’ — 20"
=wt+ov+wutov—wu—v+wu—v—w) #0
~and S(u, v, w) # 0 for (x, y, z) € II. On the
other hand S (, v, w) <0 for x=y=2=
7/ 3, therefore S(u, v, w) < 0 in IL.
Next note that min {F(z, y, 2) |z, y, 22
0,x+y+z=mn} is attained at P, = (x/3,
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/3, ©/3) and equals 0. Thus F(zx,y, z) >0
for (xz,y,z) €I\ {P,} , which shows that
k(t) > 0. Hence

Theorem 3.4. Trajectory T(ABC) is a convex
closed curve if it is not one point.

By the well known Four-Vertex Theorem
[1], T (r, [ABC]) possesses at least 4 vertices.
In fact, it admits 6 vertices at intersections with
the planesx —y =0,y —2z2=0,2—x = 0.

By (3.4) we see

dr  dy | dz _

PP P

Since # = sinx, v = siny, w = sin z, we obain

that

(3.8) x+y+ z=const. =,

(3.9) cotx + coty + cot z = const.

Therefore we obtain the following Theorem :
Theorem 3.5. Trajectory T(ABC) is given by

the intersection of surfaces (3.8) and (3.9), where

the const. in (3.9) is equal to cot (LA) + cot

(£B) + cot(£LO).
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