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Orbits of triangles obtained by interior division of sides

By Hajime SATO

Department of Mathematics, Gotemba-minami Highschool

(Communicated by Kiyosi IT6, M. J. A., Jan. 12, 1998)

Abstract" Plane triangles are classified by similarity. Let Q be the set of these equiva-
lence classes of triangles, and lABC] /2 be the class of triangles which are similar to
AABC, Putting x ZA, y /B, z-Z C, [ABC] is represented by a point in II-
{(x, y, z) Ix q- y q- z 7r, x, y, z > 0}. By making interior division of sides of AABC, we
define an orbit in II, starting from [ABC]. It is determined by a differentiable dynamical
system, and is the intersection of II and the surface cot x q- cot y q- cot z const.

Key words" Triangles" interior division" convex closed curve’four-vertex theorem.

1. Introduction. We consider here the set
T of all triangles on the Euclidean plane. Triang-
les in T are classified by similarity. In this note,
we say that AABC is similar to ,4A’B’C" and
write as dABC AA’B’C" if ZA ZA’, AB
B’, C Z C’. It defines an equivalency.

Put
(1.1) [ABC] { AA’B’C" AA’B’C" AABC}
Obviously [ABC] N [A’B’C’] 0 if and only
if ABC A’B’C" ]. We define

(1.2) 9= (T/) {[ABC] AABC T}.
Note that, in general, [ABC], [BCA] and
CAB are mutually distinct in .

Write ZA x, A B y, A C- z, then
R3"[ABC] is represented as a point in is ide-

nified with the set
(1.3) II={(x,y,z)[x+y+z-,x>O,y>O,z>O}.
The class of regular triangles is denoted by a

point (/3, z/3, z/3). Points on the boundary
of II denote degenerate triangles. A point in II
corresponding to [ABC] is denoted also by
[ABC].

Consider a triangle AABC [ABC]. On
each side of it, take the point of interior division
with the ratio t" 1 t), where 0

_
t

_
1. The

point on the side AB is denoted by A(t). Similar-
ly for B(t) and C(t) on BC and CA, respective-
ly. Put
(1.4) To(ABC) {[A(t)B(t)C(t)]lO < t- l}.
To(ABC) is represented by a continuous arc in
YI R which connects [ABC] with [BCA].
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Obviously TO (ABC) U TO (BCA) O To(CAB)
is a closed curve in H. Since B A (1), C
B(1),A= C(1), we may define [A (1 + t)
B(1 +t)C(1 + t)], 0

_
t

_
1, as [B(t)C(t)A

(t)] 0

_
t - 1. Similarly [A (2 -k t)B (2 +

t)C (2 q- t)] may be defined as C (t)A (t)B
(t)]. Now for any t R, let It] be the greatest
integer not exceeding t. Writing t* t- It], 0_

t* < 1, we define
[A (t*)B(t*) C(t*) ],

(1.5) if [t] 3m / 0 for some integer m,
[B (t*) C(t*)A (t*) ],[A(t)B(t)C(t)]

if [t] 3m + 1 for, some integer m,
[C(t*)A(t*) B(t*) ],

if [t] 3m + 2 for some integer m.
For example, if 1 < t < 0, then [t] 1
--3+2 and t*= 1--It[. Hence [A (t)B (t)
C (t)] C (1 --Itl)A (1 --Itl)B (1 --Itl)]. By
(1.5), we define as a continuation of (1.4),
(1.6) T(ABC) {[A(t)B(t)C(t)] t R },
which is represented by a closed curve in II.

There are some investigations on triangles

obtained by interior division of sides of AABC,
e.g. [4]. However, as far as know, we have
almost no knowledge about the set T(ABC), ex-

cept the case when t 1/2, where AB(1/2)C(1/
2)A(1/2) = AABC.

In this note we investigate the set T(ABC).
Establishing some lemmas on 2 X 2 matrices, we
will see that T(ABC)is a continuously diffe-
rentiable curve, and find the system of differen-
tial equations which determines the curve. It
shows that T(ABC)is a convex curve, repre-
sented by the intersection of II and the surface
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cot x + cot y + cot z const.
2. Some lemmas. Since is identified

with the set II c R3, we can introduce naturally
a topology in

The proof of the following lemma is easy and
may be omitted.

Lemma 2.1. Triangles AABC and AA (t)
B (t) C (t) share the center of gravity in common for
any t.

Take a Cartesian coordinate system. We may
suppose that the center of gravity of AABC is at
the origin. Put the coordinates of the vertices to
be A (al, a2), B- (bl, b.), then we have C
(cl, c) (--al- bl, --a- b). Then we get
by an easy calculation, for 0

_
t

_
1,

A(t) ((1 t)a + tb, (1 t)a + tb),
B(t) ((1 t)b + tq, (1- t)b + tc)

(- ta + (1 2t) b, ta + (1 2t)b),
C(t) ((1 t)q + ta, (1 t)c + ta)

((2t- 1)a + (t- 1)b, (2t- 1)a + (t- 1)@,
which is written as

B(t)
[ (1 t)a + tbl

ta + (1 2t) b
(1 t)a. + tb2
ta + (1 2t)b. ]

-t 1-2t b b
since AA(t)B(t)C(t) is determined by A(t) and
B(t). For AA(1 + t)B(1 + t)C(1 + t) AB
(t) C(t)A (t), 0

_
t

_
1, we have

A(1 / t) B(t) ((1 -t)b + tcl, (1 -t)b2 + tc2)
(- tal / (1 2t)bl, ta2 / (1 2t)b.),

B(1 / t) C(t) ((1 -t)q / tal, (1 -t)c + ta)
((2t- 1)al / (t- 1)51, (2t- 1)a / (t- 1)@,

hence

B(I+ t) 2t-- 1 t-- 1 b b.

Similarly we have for AA (2 + t)B (2 + t)
C(2 + t) AC(t)B(t)A(t), 0 - t

_
1,

A(2 + t) C(t) ((1 t)q + ta, (1 -t)c + ta.)
((2t- 1)al -- (t- 1)bl, (2t- 1)a2

+ (t- 1)b2),
B(2 + t) -A(t) ((1 t)al / tb, (1 t)a + tb),

and

B(2+t) 1-- t t b b
We define a matrix M(t), t R, as follows’ Let
t*-- t-- t] 0 - t* < 1, where t] is the
greatest integer not exceeding t,

(2.1)

[(1- t* t* )-t* 1 2t*
if It] 3m + 0,

(

-t* 1 2t*M(t)
2t*- 1 t*- 1 )’ if It] 3m + 1,

2t*-i t*-l)1 t* t*
if [t] 3m + 2.

By (2.1) we have for 0

_
t < 1,

fM(3m t)
M(3(m- 1) + 2 + (1 t)) M(2 + (1 t)),

JM(3rn- l-t)
(2.1’) M(3(m- 1) + 1 + (1 t)) M(1 + (1 t)),

/M(3m 2 t)
L M(3(m- 1) + (1 t)) M(1 t)).

Lemma 2.2. Suppose that 0 <= s, t

_
1.

(i) If s -+- t

_
1, then

"M(s)M(t) M(2 + s)M(1 + t)
M(1 + s)M(2 + t) L(s, t) M(k),

M(1 + s)M(t) M(s)M(1 + t)
(2.2) M(2 + s)M(2 + t) L(s, t)M(1 + k),

M(1 + s)M(1 + t) M(2 + s)M(t)
M(s)M(2 + t) L(s, t)M(2 + k),

where
(2.2’)

s + t- 3st
L(s, t) 1-- 3st, k= 1 3st

(ii) If I < s + t

_
2, then

[M(s)M(t) M(2 + s)M(1 + t)
M(1 + s)M(2 + t) L(s, t)M(1 + k),

M(1 + s)M(t) M(s)M(1 + t)
(2.3)

| M(2 + s)M(2 / t) L(s, t)M(2 / k),
|M(1 + s)M(1 + t) M(2 + s)M(t)
[ M(s)M(2 + t) L(s, t) M(k)

where
(2.3’) L(s, t) 1-3(1-s)(1-t),

(1 s) -4- (1 t) 3(1 s)(1 t)
1-k 1 3(1 s)(1 t)

Proof We prove only for M(s)M(t). Other
cases are similarily proved. Obviously

M(s)M(t)

_( 1--s--t
s- t + 3st

s + t- 3st
1-- 2s-- 2t + 3st ]"

(i) Notethat 1-- 3stY_ t + s-- 3st= (t + s)
3 3
--(s+t) +-(s--t) >0 if 0<s+tN1.

From
l--s-- t=L(1--k), t+s-3st=Lk,
1--2s- 2t + 3st= L(1-- 2k),

we obtain the result.
(ii) Since 0 - l--s, 1-- tN 1, we have (l--s)
+ (1- t) < 1. From
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Lemma 2.3.

M(t)-
(2.4/

l--s-- t= Lk, s + t-- 3st= L(1- 2k),
1- 2s- 2t / 3st= L(k- 1).

we obtain the result.
For the inverse matrices we have, by easy

calculations.
For any 0

_
t

_
1, we have

1
M(2 + (1 t))

3t 3t + 1

1
M(- t),

3t- 3t + 1

M(1 + t) -1= M(1 + (1- t))
3t 3t + 1

1
M(- l-t),

3t 3t + 1

M(2 + t)-= 1
M(1- t)

3t 3t + 1

1
M(- 2- t).

3t 3t + 1

In connection with (2.2’), we consider the
functional equation

(2.5) (a + r) (a) + (r) -3(a)(r)
1 3(a) (v)

0

_
a, v_ 1.

Put o"--0. Since 3(v)2- 3 (v)-+-1 4= 0, we
have that (0) --0. Differentiating with respect
to a and puting a 0, we obtain

dy
dv ’(0) (3y 3y-+- 1), y (v).

Using (0)--0, requiring that (1)= 1, we
obtain as a solution of (2.5)

2 tan (-3-a)
(2.6) 0(a)

/ + 3 tan (Y-f-a)
2 sin

,0_a_l,
cos(-a) +3 sin(-a)
’o(0) 47r //9-- 2.4184...,by taking

Co(a) satisfies (2.5) if 0

_
a, z’, a + v

_
1.

For any a R we define
(2.6’) (a) [a] + o(a- [a]).
It is easy to see that (a) is strictly monotone in-
creasing and satisfies

(2.6") (0) 0, ( ) =g, (1) 1,

1 1 1
(+a) +(-- a) 1 (0- a_).

For any s R let s* s- [s], s* (a*), 0
a* < 1. Putting a= [s] + o’*, we get s
(a). Note that the function (a)defined by

(2.6’) is of the class C but not of C.
Put

(2.7) K(a) M((a)),
for a R. Write

s (a) [s] + s*, t- (r) [t] + t*,
0

_
s*, t* < 1, s* (a*), t* (r*).

If s*-+- t*

_
1, then we see that a* + v*

_
1

by (2.6"). Using (2.1) and (2.1’), we get from (2.2)
and (2.2’) that, by (5.5),
(2.8) K(a)K(v) L(s*, t*)K(a + v),
where L (s*, t*)is the constant in (2.2’). Note
that (o’)satisfies the functional equation (2.5)
only when 0 -- a, z’, a + "r

_
1, not for general a,

vR.
Now we consider (2.3) and(2.3’). For 0 -< s,

t < 1, s+ t> 1, we put 1 s-- (a’), 1 t
(v’) and consider the equation, in connection

with (2.3’),
(2.5’) (a’+ r’)

(a’) + (v’) 3(a’)(r’)
1 3(a’) (r’)

O_a’,v’_l.
As in (2.5) we obtain

2tan(-2a )
(a’)

V- +3 tan(-a’)
Put a---- 1 a’. Then, using the addition formula
of the tangent function,

/+ tan( 273 27ra)3
(2.9) 1-(1-a)-

/+3 tan( 27r3 2r3 a)
2 tan(-a)

-+3 tan(-a)- (a).

Since s+ t> 1, we. have (1-- s) + (1 t)
< 1. As in (2.6") we see that a’ -+- z" < 1. Thus
a+ v= (1-- a’) + (1-- v’) > 1. By (2.9), for
O<a+v--l_l,
1--(a’+v’)--l--(2-- (a+v))

1-- (1-- (a+ v-- 1)) (a+ z’-- 1).
By (2.6’) we get, if 0

_
a, z"

_
1, a -+- z" > 1,
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(a+v) 1 +(a+ v-- 1)
1 + (1 (a’ + r’)).

By (2.7) we obtain K(a + v) M(1 + (a + v
--1 ))in this case. Therefore., using (2.1) and
(2.1’), we see from (2.3) and (2.3’) that (2.8)
holds also for the case s* + t* > 1. Noting (2.4)
we see that (2.8) holds for any a, v R.

Lemma 2.4. Let M t a K a be de-

fined by (2.1)--(2.1’), (2.6)--(2.6’), and (2.7), re-

spectively, then we have
K(a)K(v) const. K(a + v), a, v R.
3. Orbits of triangles obtained by interior di-

vision of sides. We have defined triangles
AA(t)B(t)C(t), t R, from the original AABC
by interior division of sides. Their equivalence
classes A (t) B (t) C (t) are represented by the
matrices M(t) in (2.1). M(t) may be replaced by
K(v) M((v)) in (2.7).

The class [A (t)B (t)C (t)] [A ( (v))B
( (z’))C( (v))] is represented by the point
p(v) (x(v), y(v), z(v)) in the set II in (1.3).
We write the point p(v) as

p (v) E (v, [ABC]), denoting that it has
originated from AABC.
Then E (a, A (t) B (t) C (t) denotes the class
of triangles obtained from AA (t)B (t)C (t), in
place of AABC, by interior division of sides with
the ratio s" (1 s), s (a) [0, 1). Since a
const, multiplication does not alter the similarity
of triangles, we obtain, by Lemma 2.4"

Theorem 3.1. With the notations stated
above, we have

(a, (v, [ABC]))= (a+ v, [ABC]), a,
v R, (0, [ABC]) [ABC].

Thus E (, ABC forms a 1-parameter group,
hence defines a dynamical system.

The set T(ABC) in (1.6) is the trajectory of
(v, [ABC] ), which is a simple closed curve. If

T(ABC) fq T(A’B’C’) =/= 0, then T(ABC)
T(A’B’C’).

The interior of the set II in (1.3) is filled up
with these closed trajectories T(ABC).

Suppose 0 t 1. The angles AA (t) and
AA (1 + t) at the vertices A (t), A (1 + t) of
AA(t)B(t)C(t) and AA(1 + t)B(1 4- t)C(1 +
t), respectively, are given by

(3.1) cos(/A(t))=
f(t)

g(t)h(t)

cos(/A(1 + t)) f(1 4- t)
g(1 + t)h(1 + t)’

in which we put, writing p a 4- az, q alb
+ r +

f(t) A(t)B(’t).A(t)C(t)
(2- 3t)p- (gtz- 9t + 1)q + (3t- 1)r,

a(t) IA(t)B(i)l rip + 2(3t- 1)q + (3t- 1)Zr,
h(t) -IA(t)C(i)l- v/(3t 2)p- 2(3t- 2)q + r,

and
f(1 + t)= A(1 + t)B(1 - t) ’A(1 + t)C(1 -t: t)

(3t- 1)p + (gtz- 3t- 1)q + (gtz- 9t + 2)r,

g(1 + t) IA(1 / t)B(1 q: t)l

v/(3t- 1)Zp + 2(9tz- 9t + 2)q + (3t- 2)Zr,
h(1 + t) Id(1 + t)C(1 q: t)l

v/p / (6t- 2)q + (9tz- 6t / 1)r.
Then if(t) f’(1 4- t)

lim lim 6
t-.1-o f(t) t-.+o f(1 4- t)

g’(1 + t)
lim

g’ (t)
lim 3

t-.-o g(t) t-.+o g(1 + t)

h’(t) h’(1 4- t)
lira h(t) lim h(1 +t) =3"
t--,1-0 t--,+0

Since d if(t)
dt log cos(AA(t))

d
dt log cos(AA(1 + t))

f’(1 + t) g’(1 + t)
f(1 + t) g(1 + t)

g’(t) h’(t)
g(t) h(t)

h’(1 + t)
h(1 + t)’

and limt__0 cos(AA(t)) limt_+o cos(AA(1 +
t)), we obtain that

d d
lim cos(AA(t))- lim cos(AA(1 + t)).
t-,l-0 t+0

Similarly
d d

lim cos(AA(1 + t)) lim - cos(AA(2 + t)),
tl-0 t+0

d d
lim cos(AA(2 + t)) lim cos(AA(t)).
t--.1-0 t--.+0

Thus we know that AA (t), t R, is con-
tinuously differentiable. Note that the side length

]A(t)B(t) is not so at t= 0,--- 1 -2
Similarly for /B(t) and /C(t).

Since the equivalence class [A (t)B (t) C (t)
(, [ABC ), t- (), is. represented by

the point (x(v), y(v), z(v)) (/A(t), AB(t)),
/C(t)), we obtain the following theorem"

Theorem 3.2. The dynamical system (,
ABC ]) is continuously differentiable.



8 H. SATO [Vol. 74(A/,

Now we will obtain the system of differential
equations for (v, [ABC]). Since
d
d--(v+ a, [ABC]) dv (v/ a [ABC])

-a(a, %(v, ABC ])),

we get, by taking a- O,

(3.2) dr (v ABC ])

a(a, (v, [ABe]))[o--o.

We will find -a (a, [ABC] )Io=o. Using the
same notations as above, we get by (3.1)

d
(3.2’) -cos(AA(t))

27 (pr q) (p + 2p)
(p 2q + r)z (4p + 4q + r) z"

By an___elementary_calculation, writing a-
b CAI, c
a =p+4q+4r --4p+4q+r,c --p--
2q 4- r, hence

1
ap (-- 4- 2b 4- 2c),

1
aq= (a + b- 5c), r---(2 --b +2c).

Write c sin(AA), sin(AB), 7" sin(A C).
Using the sine theorem" a/o-- b/15 c/T, we
have by (3.2’)

d
(3.3) a-d-iAA(t) It=o

(#2__ .2)(14 _[_ #4 q_ ,4__ 2/2.2 2,22 222)
4fl,

Hence by (3.2) and (3.3), substituting AA (t)
B (t)C (t) for AABC, we obtain the required
system of differential equations. Writing u--
sin x(v), v sin y (v), w sin z(v), where (x
(v), y(v), z(v)) (AA(t), AB(t), AC(t)), t

(v), we get, with ’(0) (4zc-)/9,: ’(0)

(v w) (u / v / w4- 2vw 2wu 2uv)
4Uy3W

u (v2- #)S,
(3.4) dy-- ’(0)

(w uz) (u + v + w- 2vw 2wu 2uv)
4vwu

v

dz: ’(0)

(u v) (u / v / w4- 2vw 2wu 2uv)
4WU3U

w (#- v)S,
where u sinx, v sin y, w sin z and

(3.4’) S= S(u, v, w)

p4 W U2W2 2U24 u + + -2 2w 2uv
3/ 4uvw

Since uvw =/= 0 in II, and a trajectory of (3.4) re-

mains in II if it starts at a point of the same set,
we know by [2, p. 34, Theorem 8.1] that
(3.5) . (v, [ABC]) is analytic with respect to
T.

CWe note that t (v) is a (but not C 2) func-
tion of v.

The only fixed point of (3.4) in II is u v
w, that is x- y z- :r/3. Further in (3.4),

if we change v and w (hence y and z) and v to
v, we obtain the same system. Hence the trajec-
tory is symmetric with respect to the plane y- z

0. Similarly for z x 0, x- y 0. There-
fore we have, identifying (v, ABC with its
trajectory T( ABC ).

Theorem 3.3. Trajectory (v, [ABC] is a

closed curve which is symmetric with respect to the
planes y-- z= O, z-- x-- O, x-- y-- O. There-

fore it encircles the point (re/3, r/3, r/3).
It degenerates to one point if and only if AABC

is a regular triangle.
Note that, for the system (3.4), the eigenva-

lues at the fixed point (:r/3, r/3, 7/3)are 0
(with eigenvector orthogonal to H) and pure im-

aginary numbers.
Now we will show the trajectories are con-

vex. Put p (v) (v, [ABC]). Since p (v) is a

plane curve on II, its curvature c(v) is given by

(r) x i(r)
(3.6) c(v) the component of

orthogonal to II,
where denotes differentiation with respect to .
If we would prove that x(v) > 0, then the trajec-
tory p(v) should be known to be convex. [1]

Since 0 t( 1, 1, 1) is orthogonal to H, we

aim to show that

((r) x (r)). -Consider the system (3.4). Put, with u sinx,
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sinyand w= sinz,
2) U2X= u v w Y w u)
2)Z w(u v

Then, with S- S(u, v, w) in (3.4’),

I ZlF 2 (S(u, v, w))’

hence it suffices to see positiveness of
YZ ZX XY

By an easy calculation we see
YZ ZX XY

=2((w v uvw + b(u w u vw
+

Since cos.wetc., we obtain by (3.4)
(3.7) K-- --6uvwF(x, y, z)(S(u, v, w)) ,

where
F(x y z) cosx(v -w +cosy(w

2) yu + cos z(u v W

cos x sin x (siny sinz + cos y sin y
(sin z sin x) +. cos z sin z(sin

First we note that u, v, w
w 0 for (x, y, z) H. Hence

u + v + w _2vw

_
2wu 2uv

(u + v + w) (u + v w) (u v + w)(u v w) 0
and S(u, v, w) 0 for (x, y, z) H. On the
other hand S (u, v, w)
if/3, therefore S(u, v, w) 0 in H.

Next note that min (F(x, y, z)lx, y, z
0, x+ yWz- } is attained at Po- (/3,

7#3, 7#3) and equals 0. Thus F (x, y, z) > 0
for (x, y, z )II\ (Po}, which shows that
to(v) > 0. Hence

Theorem 3.4. Trajectory T(ABC) is a convex

closed curve if it is not one point.
By the well known Four-Vertex Theorem

[1], 5g (v, [ABC])possesses at least 4 vertices.
In fact, it admits 6 vertices at intersections with

the planesx--y= 0, y--z= 0, z--x= 0.
By (3.4) we see

dx dy dz 1 dx 21 dy 1 dz+ + + + --; d-/= 0.
t y w

Since u sin x, v sin y, w sin z, we obain

that
(3.8) x
(3.9) cot x 4- cot y + cot z const.
Therefore we obtain the following Theorem:

Theorem 3.5. Trajectory T(ABC) is given by
the intersection of surfaces (3.8) and (3.9), where
the const, in (3.9) is equal to cot (AA) + cot
(AB) + cot(AC).

[2]

[31

[41
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