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§1. Results. A square-free positive inte-
ger n is called a congruent number if it is the area
of a right triangle with rational sides. The re-
levant family of elliptic curves defined over the
rational field @ is

E,:y'=2°—n'x.

This is because a necessary and sufficient condi-
tion for # to be congruent is that E, is of posi-
tive rank 7, The Hasse-Weil L-function L(E,, s)
has analytic continuation to all of C, so we can
consider its order s, of vanishing at s = 1. Birch
and Swinnerton-Dyer (BSD) conjectured that s,
= 7,. Using algorithms in Cremona [4], we com-
puted L (E,,1) for r=20,1,2, . .. using
300000 series terms, thus producing estimates
of s, for all square-free # < 100000. Together
with rank computations for this range, we have
obtained the following results.

a) 56949 curves have s, < 1. Among these,
26729 curves have s, =0 and the remaining
30220 curves have s, =1 The work of
Coates-Wiles [1] and Gross-Zagier [2] proves 7,
= s, for these curves.

b) 3656 curves have s, = 2. We found that
among such curves, all the 1665 curves with »
< 42553 have 7, = 1.

c¢) There are 185 curves with s, = 3. Among
these, 177 curves have 7, = 3, while for the re-
maining 8 curves, we have 3 < 7, < 5. In either
case, it follows that s, = 3 because otherwise s,
should be 1, and s, = 1 would imply 7, = 1, a
contradiction. For the 8 curves, it is difficult to
determine 7, because of the existence of certain
quartic equations which are solvable locally
everywhere but not globally. This suggests a
non-trivial Tate-Shafarevich group for E, or its
2-isogenous curve,

E, .y =2+ an'x.

d) For »n < 100000, four curves have s, =
"4, These are E,gp4, Eigorar Eugrsa and Egppps All
four curves have rank equal to 4.

These results, together with those of Coates

and Wiles [1], show that if # < 42553, the weak
form of BSD holds: 7, >0 if and only if
L(E,,1) = 0. As a consequence, we obtain all
congruent numbers less than 42553.

§2. Rank computation algorithm. Using
2-descent, the computation of the rank 7, can be
transformed into the problem of determining the
solvability or non-solvability of certain Diophan-
tine equations. Write £ ~ y whenever x and y
belong to the same coset of QX/(QX)Z. Consider
two types of equations:

2

(1) ax* + %Y“ = 7% d|an’,
2

(2) ax*t — %W =7 d|n’

Now let D, =d,, d,, ..., d, be the set of
distinct (i.e. pairwise inequivalent) square-free
integers d; such that d, ~d (1 =1, 2,..., 1) for
some d dividing 47° and (1) is globally 2solvable

in integers X, Y, and Z with (X, 4% YZ) =
(Y, dXZ) = 1. Similarly, let D, = d,,, d s, . . .,
d,., be the set of distinct square-free integers d;
such that d;~d(j=p+1,p+2,. .., 0+

v) for some divisor d of #° and (2) is solvable in
2

integers X, Y and Z with (X, %YZ) = (Y, dXZ)
= 1. Then D, and D, are finite subgroups of @/
(Q*)? and 7, = log,uv — 2 (cf. Silverman and
Tate [6]).

By determining the integers d such that (1)
or (2) are locally solvable everywhere, we can
bound #, from above. We then search for global
solutions of (1) and (2) to bound 7, below. While
the assumption of the BSD conjecture would
guarantee the eventual termination of solution
search algorithms, several equations have very
large solutions. The following method involving
successive parameter changes was used for a
more efficient search of solutions of the equation
(3) aX*+ bY*' = 27

First we search for (x,, ¥, Z, ) satisfying
the equation ax® + by2 = Z? which has quadra-
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tic form parametric solutions
x=a,i’ + ayj + ag’ = fG, j),
y = bi’+ bij+ bj’ =g, ).

Next we search for (i, j,, X,) satisfying the
equation a,i° + a4 + ayj° = X which has pa-
rametric solutions

i=ck’+ ckl+ ¢,° =F(k, 1),
j=dk* + dkl+ di’ = Gk, 1).

We then search for k£ and [ such that y =
g(F(k, 1), G(k, 1)) is a square . If unsuccessful
over a certain range, we employ another change
of parameters and solution search. This method
has allowed us to produce large solutions for
equations (3). For example, we found the solution
X = 23134031, Y =81124821 and Z = 1327
211620355592802 to the equation 2nX* +
2nY* = Z* for n = 20201, proving that 20201
is a congruent number. For # = 35842, we
found the solution X = 19482547427, Y = 8090
1619850 to the equation X' + Y*=1792127
to prove likewise that 35842 is congruent.

§3. Local-global. Equations (2) and (1)
which have solutions everywhere locally but
none globally determine non-trivial elements of
the Tate-Shafarevich groups W (E,(Q)) and I
(E’,(Q)), which we shall describe in part.

Consider the 2-isogeny ¢: E,— E’, given
by

2

@ - (4, 110

x
(0, 0) > oo’
o [— oo’
and its dual ¢ : E’,— E, given by
yz y(xz _ 4112)
(z, y) = ( 2 2 >
4x 8x
(0, 0) > o
oo’ [— oo,

One can show that E,(Q)/¢ (E’, (Q)) and
E’,(Q)/$p(E,(Q)) are isomorphic to D, and D,,
respectively. The finite subgroup S*(E’,) € Q*/
(Q™)? consisting of d’s for which (2) is locally
solvable everywhere is the ¢-part of the Selmer
group of E’,. Similarly, the finite subgroup s?
(E,) € Q"/(Q™)? consisting of d’s for which (1)
is locally solvable everywhere is the ¢@-part of
the Selmer group of E,. The quotient of S (E’,)
by D, is isomorphic to Il (E’,)[¢] < WI (E’,),
while that of S*(E,) by D, is isomorphic to II
(E,)[¢] < I (E,). We have the following exact
sequences :
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0— E,(Q/¢(E",(Q) — S*(E",) — UL(E",) [¢] — 0,
0— E",(@/$(E, (@) — S*(E,) — I(E,) [$] — 0.
For O-rank curves E, we computed the
order |UI (E, )| using the conjectural (BSD)
equation,

L(E, 1) = 2|1l (E) | E,(Q),,|"Ilc,,
where 2 is a real period of E,, ¢, = (E,(Q,) :
E,(Q,)) is the index of the subgroup E,(Q,) of
p-adic points with good reduction mod p in
E,(Q,) ; and the product is taken over all primes
of bad reduction. For all O-rank curves E, with
n < 100000, computations show that |II (E, )
| = ¢ for t < 40. In particular, | Il (E,,,) | =
40°,

Let E, have rank 0. Using Tate’s algorithm
(cf. [4]) to compute ¢,, we can obtain the ratio of
the orders of the Tate-Shafarevich groups of the
isogenous curves E, and E’,,.

Proposition. Let k be the number of prime di-
visors p of n such that p = 3 (mod 4). For O-rank
curves E,, the ratio | WL (E’,) | /| W (E,) | of the

orders of the Tate-Shafarevich groups of the
isogenous curves E, and E’, is

2% if n = 1(mod 8),

2"V if n = 3(mod 8),

2" if n is even.

For example, consider the O-rank curve E,,.
Assuming the BSD conjecture, we compute | Il
(E,,) | to be trivial. The proposition shows that
| I (E",,) | = 4, suggesting the existence of an
associated equation (2) which has local solutions
everywhere but none globally. One such equation
is —7-3-X'+72°v'=Z%

§4. Tables. (E, is represented by the num-

ber 7 in Tables I -1IV.)
Table 1

S, 7, No. of curves E, with n < 100000
4 4 4
3 3 177
3[13<r,<5 8
2117, <2 1558(n < 42553)
2|11<7,<4 107 (n < 42553)
21057,<2 1767(n = 42553)
210<7,<4 224 (n = 42553)
1 1 30220
0 0 26729
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Table 1. All curves E, ; n < 100000;s,= 4,7, =4

31

Table . All curves E,; n < 100000;s,=3;3<7,<5

29274 | 46274 | 46754 | 57715 26245]42486(68839/80189|82205(83845|88502]92045
Table IV. All curves E,; » <100000; s, =7, = 3
1254 | 2605 | 2774 | 3502 | 4199 | 4669 | 4895 | 6286 | 6671 | 7230
7766 | 8005 | 9015 | 9430 | 9654 | 10199 | 10549 | 11005 | 12166 | 12270
12534 | 12935 | 13317 | 14965 | 15655 | 16206 | 16887 | 17958 | 18221 | 19046
19726 | 20005 | 20366 | 20774 | 20909 | 21414 | 22134 | 23359 | 23405 | 23446
23709 | 24190 | 24414 | 26013 | 26565 | 27613 | 28007 | 28221 | 28806 | 29055
29294 | 29614 | 30270 | 32039 | 32318 | 32599 | 32893 | 33117 | 33286 | 35269
35286 | 35719 | 36366 | 36519 | 37862 | 38982 | 39630 | 40397 | 40406 | 40710
40885 | 40894 | 41151 | 41181 | 41230 | 41309 | 41582 | 41943 | 42029 | 43405
43870 | 45037 | 45118 | 46246 | 47094 | 47957 | 48622 | 50061 | 50583 | 50629
51302 | 51359 | 51590 | 51933 | 53605 | 55279 | 55510 | 55549 | 56406 | 56630
56990 | 57310 | 58326 | 58695 | 59415 | 60006 | 60119 | 60229 | 60415 | 60574
60847 | 61815 | 63005 | 65198 | 65310 | 65535 | 65639 | 67438 | 67542 | 67606
68295 | 68605 | 69015 | 69085 | 69326 | 69509 | 69870 | 70013 | 70189 | 70774
70941 | 70959 | 71654 | 72151 | 72854 | 73055 | 73151 | 74102 | 74166 | 75174
75454 | 76245 | 76479 | 76958 | 77046 | 77486 | 78422 | 78526 | 80015 | 81469
81669 | 81959 | 82309 | 83159 | 84134 | 84390 | 85470 | 85702 | 86086 | 86790
88206 | 88422 | 89238 | 89286 | 90174 | 90597 | 91749 | 91910 | 92157 | 93126
94655 | 95095 | 97422 | 98798 | 99231 | 99309 | 99645
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