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1. Introduction and notations. Throughout
this paper, we denote by N the set of positive
rational integers, and put Ny = N U {0}. Z will
mean as usual the set of rational integers. For a
square-free D € N, the real quadratic field
Q (/D) will be denoted by k, its class number by
h, and its fundamental unit > 1 by ¢, = (t + u
VD)/2. The norm map from k to @ will be de-
noted by N. The class number two problem re-
quires to determine the set of all D for which 4,
= 2 under certain conditions. This problem was
solved by Katayama [2,3] with one possible ex-
ception for the conditions Nep, = — 1,1 < u
< 200; by Mollin and Williams [5] for k of Ex-
tended Richaud-Degert type (i.e. with D = m’+r
where 4m = 0 (modr)), also with one possible
exception; and by Taya and Terai [7] for k of
Narrow Richaud-Degert type (i.e. with » = = 1 or
+ 4).

In this paper, we shall consider this problem
for the case Nep, = 1, 1 < # < 100 and solve it
with one possible exception (see Theorem below).

2. Lemmas and propositions. We begin by
citing two known results as Lemmas 1,2 (The let-
ters N, D, ¢, t, w will always keep the mean-
ings explained above. For a real number x,
[x] means as usual the greatest integer < x).

Lemma 1 (Yokoi [11]). Suppose Ne, = 1.
Then the following conditions for n, v € N, w
€ Z determine these numbers uniquely, and we
have n = [¢/u’], w= D — 2tn + u’n’:

t=u2n+v, 1)2—4=wuz,v<u2
D= u’n® + 2on + w.

For our real quadratic field k = Q(/D), we
denote by d, its discriminant (i.e. d, is D or 4D
according as D = 1 (mod4) or = 2, 3 (mod4)),
by x, Kronecker character of k and by L(1, x,)
the Dirichlet L-function with this character.

Lemma 2 (Tatuzawa [6]). Suppose d, =
max(e"%, ¢''?) for a real number @ with 0 < «
< 1/2. Then we have

0.655

LA, x» >

k
with one possible exception of k.
The following lemma will be used immediate-
ly afterward:
Lemma 3. We have ¢, < 2uy/D.

Proof. This follows easily from ¢=
VDu* £ 4 < w/D + 2. Q E. D.

Let D be a square-free number € N for
which Ne, = 1 and #, v, w be the numbers € Z
determined by the conditions in Lemma 1. From
Lemmas 2,3, we can deduce the following

Proposition 1. D, n, v, w being as above,
there exists a real number v (%) determined by #,
such that h, > 2 follows from # = v (%), with
one possible exception of D.

Proof. From Lemma 2 and the well-known
Dirichlet’s class number formula, we get

RA 0.655 yd,d;'"
hy = 2loge,, L, xo > 2loge,, Y

for y =2 11.2 and d, = ¢’ with one possible ex-
ception of k. Since ¢, < 2uyD < 2uy/d, by Lem-
ma 3, we have _—
h, > 0.655d, .
y(logd, + 2logu + 2log2)
y being fixed, the right-hand side is a monotone
increasing function of d,. Thus we can replace
here d, by ¢’ to obtain
> 0.655d2 ™!
k7 y(y + 2logu + 2log2)

Let us denote by f, (y) the right-hand side of
this inequality. For any fixed u, f, (y) tends to
© as y— ., So there exists a real number
c(u) = 11.2 satisfying f,(c(#)) = 2. Thus, solv-
ing the inequality

< D=un’+2m+w<d,
for #, one can find a real number v (#) such that
h, > f,(c(w) = 2 for n = v(u). Q. E. D.

In fact, we may take v (x) = y4 + wet™ /
u’. Moreover, we can choose ¢ (%) < 16.5 for 1
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< # < 100 by the help of computer, so that we
obtain
V4 + ue*™ < 4 + uPe’®® < 3828u

and can put v (#) = 3828/u for such #’s. This
result will be soon used.

To facilitate the formulation of the next Lem-
mas 4,5, we introduce the following

Definition. For many m € N and square-
free D € N, the Diophantine equation P Dy2
= = 4m is said to have a trivial solution (z,, ¥,)
if m = s and s divides both X, and y,. Any other
solution is called non-trivial.

Lemma 4 (Davenport- Ankeny- Hasse- Ichimura).
The notations being as above from the existence
of at least one non-trivial solution of 2> — Dy’
= =+ 4m follows m = (t — 2)/u’.

Proof. See [10] Lemma 1. Q. E. D.

Lemma 5. Let D, k be as above, ¢ an odd

D
prime with (—) = 1 and e the order of the
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ideal class of k containing a prime factor of g.
Then the Diophantine equation z?— Dy2 = =
44¢° has a non-trivial solution.

Proof. Let @ be a prime factor of ¢ in k and
put Q° = (w), w-= (x + y/D)/2. Since g splits
in k, we get

¢° = NQ" =|N(w)| =

lz* — 4y’
4
Proposition 2. Let D be as above, n, v, w

the numbers given in Lemma 1, and ¢ an odd

. Q. E. D.

D
prime with <7> = 1.1f h, = 2, then g =n.

Proof. By Lemmas 4,5, we have ¢° = (¢t —
2)/u’. Here we may replace e by 2 owing to h,
= 2. Thel;efore by Lemma 1, we get

un+ov—2 v— 2 2
¢ z———=n+—3-2n— .
u u u

If = 2, we have qZZn—l/Z whence qZZn.
If #w =1, we have qZZn-—Z and D=#n"—4

q
Table

(u, D) (u, D) (u, D) (u, D) (u, D)
1, 165)* (7, 429)* (13, 4245)* (24, 8357) (56, 111)
a, 221)* (7, 1205)* (14, 51)* (27, 6573)* (56, 305)
a, 285)* (7, 1245)* (14, 447)* (28, 194)* (56, 602)
a, 357)* (7, 2373)* (15, 2013)* (30, 1007) (56, 782)*
a, 957)* (7, 5885)* (15, 2037)* (32, 258)* (56, 5397)
1, 1085)* ( 7, 8333)* (15, 5117) (32, 1605)* (57, 1005)
1, 1517D* (8, 39)* (15, 5645)* (32, 7733)* (57, 6773)
1, 2397D* (8, 95)* (16, 66)* (33, 3893) (58, 843)*
2, 15)* (8, 105)* (16, 395)* (34, 287)* (60, 70)
2, 35)* (8, 138)* (16, 2717)* (35, 861) (60, 902)*
2, 143)* (8, 203)* (16, 5757)* (35, 1653) (64, 1022)*
@3, 205)* (8, 885) (17, 2613)* (40, 155) (64, 2301)*
@3, 1469)* ( 8, 1173)* (19, 3237)* (40, 402)* (65, 11357)
(3, 1965)* (8, 2093)* (19, 9005)* (40, 2261) (66, 335)
(3, 2085)* (8, 3813)* (20, 102)* (40, 4893)* (69, 2877
(3, 2669 (9, 741)* (20, 222) (42, 923) (72, 183)
(4, 300* (9, 2045)* (21, 1581) (44, 482)* (72, 1298)*
“, 42)* (10, 635)* (22, 119)* (45, 5453) (80, 3597)*
4, 1100* (11, 3005)* (22, 123)* (46, 527)* (84, 266)
(4, 182)* (11, 5957)* (23, 4773)* (48, 299) (88, 273)
(5, 645)* (12, 34)* (24, 55) (48, 3605)* (88, 755)
(5, 4277* (12, 78) (24, 146)* (48, 7973) (95, 1749)
(5, 7157)* (12, 230)* (24, 327)* (50, 623)* (96, 710)
(6, 87)* (12, 318)* (24, 377) (51, 805 (96, 14405)*
(6, 215)* (13, 1533)* (24, 2765) (52, 678)* (99, 1837)
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by Lemma 1. Ifq2=n—1orn—2,D=n2—
4 should be divisible by 4 or q2 respectively in
contradiction to choice of D. Therefore q2 > .

Q. E. D.

Suppose now D € N is square-free and Neg,
= 1. Let n, v, w be the numbers given in Lemma
1 and 1 £ # < 100. From Proposition 1,2 and
the genus theory follow the following necessary
conditions for &, = 2:

(i) 0=<n<v(m = 3828/u, D
(ii) q2 = n for the least odd prime g with (?)
=1,

(iili) The number of distinct prime factors of d,
is 2 or 3.

3. Main theorem. We have now all neces-
sary tools to get the following

Theorem. There exists exactly 125 real
quadratic fields k= Q(/D) as given in the
Table (with one possible exception) with class
number 2 with 1 < » < 100, where (¢ + uy/D)/2
is the fundamental unit > 1 of k.

Proof. By the help of a computer and using
Kida’s UBASIC 86, we can list up all D satis-
fying the above necessary conditions with Az, =
2.

Remark. In the Table, those given in [5] are
marked with *.
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