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1. Statement of results. Let k be a field
and (R, m) a local integral k-algebra with field
of fractions K. We study k-valuations v of K
with a center in R, that is, such that their valua-
tion ring (R,, m,) contains R and m, (? k (0).
We denote by q) the totally ordered group of the
valuation and set F= v(R\{0})c q)+ U {0}.
The valuation determines on R a filtration de-
fined by the ideals

P(R) {x R/v(x) >-}
+

or P (R.) (x R/v(x) > },
and the associated graded ring introduced by
Spivakovsky ([6], see also [4], [7]):

grR (P/P2,
which is a F(or q+ )-graded (R/mv R)-
algebra. We assume throughout that has finite
rational rank r (q))(and therefore is countable)
and finite height (or rank) h() The three facts,
extracted from [8], are the following:

1) A connexion between valuation theory and torie
geometry

Proposition 1.1. For any specialization (see
[lO],vol.2, Chap. VI,{}16) of the valuation to a
valuation 9o with a center in R and such that

mvo V) R m and the residue field extension kR
kvo Rvo/ mvo induced by the inclusion R Ro is
trivial, the algebra gro R is isomorphic to a quo-
tient of a polynomial ring kR[ (Ut)ieI] with co-

efficients in kR and possibly countably many indeter-
minates by a binomial ideal, i.e. an ideal with (pos-
sibly countably many) generators of the form U’-
/mnUn

where U’- U1’’’ Usms and /,,n k*R.
It means that it is a deformation of a (non normal)
toric variety (see [2]), possibly of infinite embedding
dimension, which is nothing but SpeckR [tr], where
kR[ tr] is the semigroup algebra of F, obtained by
replacing all mn by 1.
2) Structure of valuation semigroup algebras and
regularity of grvRv

Proposition 1.2. The graded kv-algebra
grR, is a filtering direct limit of termic maps (i.e
mapping a variable to a term, of the form constant

a monomial) between polynomial subalgebras in r (q)
variables. The semigroup algebra k,[ t+] is the
direct limit of the corresponding system of toric (or
monomial) maps, obtained by replacing all the con-
stants by 1,.

3) Noetherianity of -adie completions
Proposition 1.3. Assume that R is an analy-

tically irreducible noetherian local ring. If 11 de-
notes the valuation of height one with which 1 is
composed, and p m, (? R the center of on R,
then the completion of the ring R with respect to
the topology defined by the (P)e/-filtration, is

isomorphic as topological ring to a quotient of the p-
adic completion " of R; it is noetherian.
In particular, if R is excellent, so is / since
is excellent by ([5]).

2. Ideas of proofs. 1) Since R, is a valua-
tion ring, the q)+-graded k,-algebra gr,R, has
the property that each of its homogeneous compo-
nents is a 1-dimensional vector space over k,. If
the residual extension is trivial, the same is true
over kR, and since the kR-algebra gr,R is a
graded subalgebra of gr,R,, each of its
homogeneous components is a kR-vector space of
dimension <_ 1. By an observation of Korkina

([3], see also [2]), this implies the result: taking a
(possibly countable) system of homogeneous
generators of the algebra gives a graded surjec-
tion kR[ (Ui)ii]-- gr,R once Ui is given the de-
gree of its image. The kernel is generated by
homogeneous polynomials, but any two terms of
such a polynomial have non zero kR-proportional
images, which shows that the kernel is generated
by binomials.

2) Let be a valuation of height one, i.e with
archimedian value group q)c R (see [10], Vol.
II). Assume first that is generated by m
rationally independent positive real numbers v,

vm. We use the Perron algorithm as ex-
pounded in ([9], B. I, p. 861), but with a some-
what different interpretation. The algorithm con-
sists in writing
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(1) (1) (0) (1) (1) (0) (1)
’1 Tm T rl -- a2 Tn -1 +

where
(o)

and repeating this operation after repl’acing
(1) (1)r) by r ), and so on. After

steps, one has written

Ti Ah) (h) (h+m-1) (h)
V + + A

or, if we denote by w the (weight) vector (Vl,
v) R and by A()

the vector (A), A()),
(h)A (h) (h)-- (h +1) (h)(h+m-,1)

where the vh)
are positive, the coefficients

are non negative integers, and the matrix of the
vectors

A(h) A<h+l) A(h+m-1)

Ations in P- (R) of the vectors tend to the
direction of w. So we have a sequence of vectors
Ah)

with positive integral coordinates (becoming
longer and longer) whose directions in pm- (R)
spiral to the direction of w and such that any
consecutive m of them as above form a basis of
the integral lattice such that w is contained in the
COnVeX con
which they generate. The convex dual #h) of
(see [1], V, 2, p. 149) is contained in the half
space ar 2 0, the integral points of which
form the semigroup @+. For any commutative
ring A, the A-algebra of the semigroup #h)
Zm

is a polynomial algebra A[xh), .,x
(loc. cit, VI,2) contained in A[t+], and since by
assumption there are no integral points on the
hyperplane = ar 0 except the origin, the
semigroup @+ is the union of the #h) Z as h. This proves that A[t+] is the union, or
direct limit, of these polynomial subalgebras.

If we now consider a group with one more
generator rm+x > 0 which is rationally dependent
on r, r, Zariski shows in ([9], B. I, p. 862)
that the new weight vector w (r,
r+) R+ is contained in a rational simpli-
cial cone a c Rm+ generated by m integral vec-
tors of the first quadrant forming part of a basis
of the integral lattice. Indeed w is contained in a
unique rational hyperplane. The dual cone

+ is the product of an m dimensional strictly
convex cone by a 1-dimensional vector space
(see [1], V, 2) generated by an integral vector
which is the dual of the rational hyperplane con-

taining w. By refining as above by the Perron
algorithm for w inside the linear span < a > of
a, starting with the barycentric coordinates of w
in a, we find a sequence of regular simplicial
cones a c a whose duals #(h) C + corres-
pond ([1], VI, Th. 2.12) to algebras of the form

(h) (h) +1 +]A[xl Xm Xm+l] CA[t Note that the
map f" Zm+l--- R defined by (a1, am+l)I---*

m+l

i= air is no longer injective’ the primitive
vector corresponding to the variable xm+l is in
the kernel. The ?r h) fq Zm+x

fill up f-l(+ U {0})
as h--- oo since the only rational points of the
hyperplane m+lj= ajv 0 are on the dual of the
hyperplane containing w, which is contained in

all the (r h). So the direct limit of the images of
(h) =kl

the maps A[ t] A[ xh), Xm X+] ---* A[
t+] is A[t+]. But these images are isomorphic to

(h) (h) :t:1AI_X ...,xm Xm+]/(Xm+- 1) SO that they
are again polynomial rings A[xh), Xm ].f’(h)
we have more generators rationally dependent on

v, V,n, we can repeat the argument after tak-
ing as new generators the coordinates of the
weight vector with respect to the m primitive
vectors of a. A group c R of finite rational
rank is a direct limit of such extensions.

Let now be a totally ordered group of fi-
nite height h > 1. We have a surjective ordered
map /2" ---* (P where is of height h 1, and
the kernel W of /2 is of height 1. By induction on

the height we may assume that 1+ is the union
of sub-semigroups isomorphic to Nr(l), and we
know from the lemma above that the same is true
for

Let us denote the semigroups that fill #1+ by
F, and let ’ c #+ be the subsemigroup gener-
ated by elements e, er which lift to q}+ the
generators of F. Similarly let us denote by G
gr+ free semigroups which fill go+, generated say
by f, fsc Note that for
+ q}+ U {0}, and consider for ris-tuples n

(n,, 1 <_ s <_ r, 1 <_ t <_ s) of non negative

integers, the free semigroups ’(n) c q}+ U {0}
generated by
The /(n) @ G are of rank equal to the rational
rank of q} and fill up q}+. This proves the result.

Corollary 2.1. The semigroup algebra kv[t+]
is a quotient of a polynomial ring over k in count-
ably many indeterminates ku[ ( Uj)] by a binomial

ideal with .generators of the form
( U U),
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for some J" c ], with ]m(j)] _> 2. tient of a ring having these properties. Moreover,
The proof above shows that k,[t+] is a union of the injection
polynomial algebras with monomial maps. Each P/H c
member of a system of homogeneous generators implies that the valuation p extends to P/H as a
of the k,-algebra k,[t+] must appear in one of valuation of height one. The valuation is still
the polynomial subalgebras, and we may assume --> 0 on the localization R,, and so we have a

pRp/.-that it appears as one of the generators of that morphism of completions Rp :/-/p c Rp. Let us
algebra. The only relations between these gener- replace R by Rp for a moment, so that p is the
ators are those corresponding to the toric inclu- maximal ideal m. By [10], Vol. 2, Appendix 3,
sions k,[x x,,] k,[yl, Ym], and they Lemma 3 p. 343, the distinct valuation ideals (i.e
are of the announced type. our P(m/H) written without repetition) form a

Corollary 2.2. Given the ring R of a valua- simple infinite descending chain of ideals which
tion of finite rational rank, the graded algebra are primary for the maximal ideal r of m/H
grR is a quotient of a polynomial ring k[(Uj)je]] and have intersection zero. We denote them by
in countably many indeterminates over the residue Now we can apply Chevalley’s Theorem ([10],
field k, by a binomial ideal of the form Vol. 2, Chap. VIII, 5, Th. 13, p. 270), which

(U U())],, k* asserts that there exists an integer valued func-

for some]’ ], with Im(j)l--> 2. tion s (n)tending to infinity with n and such
it suffices to observe that setting all constants that for each valuation ideal /5, we have
equal to 1 in the binomial relations given by fact rhs(j). This, added to the fact that the/5 are prim-
1) for gr,R, must give k,[to+], ary for rh, proves that in the ring m/H the
3) We note that since is countable, the -adic -adic topology coincides with the rh-adic topolo-
topology has a countable basis of neighborhoods gy, so that it is complete for both, and therefore
for every point. The quotients R/P form a pro- has to be equal to/’.
jective system since the semigroup + is totally When the center of is not necessarily m,
ordered. One can then define the -adic comple- this shows that on R we have the inclusions P
tion of R as p(S()) (k)

where p denotes the symbolic power-- Jim R/P. p(k) pkRp N R. By ([10], Chap VIII, 5, Cor. 5
/ p. 275), since R is analytically irreducible, the

There is a natural map R--*/, which is injec- topology defined by the symbolic powers coin-
rive since the filtration is separated. The valua- cides with the p-adic topology, which gives the
tion has a canonical extension to a valuation result in the general case.
of/v with values in q). It now suffices to note that whenever a
Let us assume that R is a noetherian local ring valuation is composed with a valuation , the
and that p is a valuation of height one. Set p topologies which they define are equivalent.
my FI R" since R is noetherian, we have p(p) >
0, say (p) 0, and since is of height one, its References
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