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Abstract: The aim of the present paper is to give an asymptotic behavior of the dis-
placement field for curved crack case and we give a definition of stress intensity factors for
the case. The main result is Theorem 4.

1. Introduction. We study the structure of
the displacement field near a tip of a curved
crack in two dimensional homogeneous and isot-
ropic elasticity, and we restrict ourselves to the
analysis for the "stress intensity factors" (S.I.F.’s)
in the present research.

The S.I.F.’s are so important that they are
regarded as one of the parameters for the criteria
of crack growing in fracture mechanics. Solutions
to straight crack problems have singularities of

1/2
order r at the tips of cracks, where r denotes
the distance from the tips. Irwin [3] gives an
asymptotic expansion of the solution at the tip of
a crack to specify the order of singularities. The
coefficients of the leading terms are called "stress
intensity factors". Refer to Grisvard [2] for a
mathematical justification of the expansion in the
straight crack case.

Even though the S.I.F.’s are important,
mathematical analysis for S.I.F.’s has not estab-
lished yet for curved crack cases. Most of en-
gineers just believe that solutions have the same
structure even for curved cracks as well as
straight ones, but we have no mathematical re-
sults to guarantee it. We refer Wendland-
Stephan [6] concerning a mathematical analysis of
singularities in curved crack problems. They
show that the "gap of the displacement" on the

1/2
curved crack has singularity of order r at a tip
of the crack, but they do not reach the structure
of the displacement field near the tips.

The aim of the present paper is to give

asymptotic behavior of the displacement field for
a curved crack case and we give a definition of
stress intensity factors for the case.

We will show that the structure of the lead-
ing terms is independent of given forces and the

crack, and the coefficients of the leading terms
are worth calling "stress intensity factors". It is a
new result that the definition of S.I.F.’s for
curved crack problems is given mathematically,
and the main result is Theorem 4.

thank Prof. Ohtsuka and Prof. Iso for their
suggestions to the present research.

2. Statement of the problem. Let S be a

smooth closed Jordan curve in R2. Let ,, :/: S be
a connected open subset of S and we denote the
end points of ,, by S and $2. We regard a
domain r.’----- R2\ as two dimensional isotro-
pie and homogeneous elastic body. We denote by
n (ha, n)r the outward unit normal vector on
S and v

+ (x) limt_.+ o v(x- tn), x S.
The displacement u (u1, u)

r
is a real

valued vector field defined on Qr.. As we restrict
our problem to the isotropic and homogeneous
case, the strain and the stress a are given by

1
e(u) - (u + 8u),

a(u) 2e(u)6 + 2/2e(u), i, j 1,2,
where 2 and are the Lam6 constants and --8/xl.

Remark 1. Subscripts take the value 1,2 and
we use the convention of summation, that is, we omit

summation signs over repeated indices. For example,
(u) Ek=l kk (u) and 0ia#(u) E=l 0iai(U).
The displacement u is given as a solution to

the following problem, which is called the "trac-
tion problem".

Problem 1. Find u such that
(2.1) Oai (u) 0 in ,Or.,
(2.2) a (u) n g on _,,

T
where g (g, g) ,s a g,ven surface stress on
called "traction"

3. Weak formulation. Let us introduce a
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weighted Sobolev space W I(.Qz) by
(3.3) WI([2.) "= (u H,o(9z) wu L([2),

u L (gx) }
with a norm

(3.4) u
=1

where w is a weight function w(w)
log w [)-’ and [ denotes the Euclidean norm
of . Functions belonging to V :=
W() have gaps [u] ": u+ [z u-[z, and the
mapping u [u] is continuous linear from V

1/2 2 1/2onto--oo () The space--oo () is defined by

with a norm

p(z)ds, where d(z)is a smooth function de-
fined on satisfying

lim Ix-- S[ d O,

and dsx denotes the measure on with respect
to the arcwise parameter. See Lions-Magenes [5]
in detail.

For functions belonging to a subsace of
defined by

tractions ()e are well-defined as con-
tinuous linear mappings from Xo to -*oo ()
and an extended Green’s formula

(a(u) + +n,
holds for u Xo, v (v, v) V.

Remark 2. The expression (’, ") is the dual
map between {H()}’ and H() and a func-
tion L() is regarded as an element of
(H(Z) )" to

(, ) (x)(x)ds, C().
Suppose that u V satisfies (2.1) in the

sense of distribution and satisfies (2.2) in
{H()}’, then we have

(g, [v]) for all V

by the Green’s formula. But Korn’s inequality
does not hold for u V, and we introduce a quo-
tient space, according to Le Roux [4], in order
guarantee uniqueness.

We define an equivalence relation u v by
u- v constant vector field and set ’= V/.
We denote by the equivalent class containing u

V, and the quotient norm a I1 ’- infua u IIv
is induced. If we define

[] "= [U], ij() "= ij(U) and

ai() "= aii(u), for u
the left hand sides of these expressions are
well-defined and we reach the next problem.

Problem 2. Find such that

a(a)(e)dx (g, [e])(3.5)

for a given g {H ()}’.
Now, we have the Korn’s inequality

and hence we conclude that the Problem 2 has
a unique solution # for a given g
{H:: (X)}

Remark 3. If u V is a solution to the
Problem 1 then which contains u is the solution
to the Problem 2. Conversely, if is the solution to
the Problem 2 then any representative u is a

solution to the Problem 1.
4. Representation by the elastic potential.

We represent a solution to the traction problem
(2.1), (2.2) by the elastic double layer potential
defined by

W() (x) P (x, y) (y)

where P(x, y)is a 2 x 2 tensor with its ele-
ments

1 1
P(x, y) 2 n log Ix- y[

+2(2+) aslglx y]
+ p a (x- y)(x- y)+ 2(2 + 2) s Ix- y

(x) (,(x), e(x)) Le(X) and the sym-
bol e denotes the alternating symbol

(s,,) =( 0 1)--1 0
Lemma 1 For any /2 2

oo () we have"
(i) W() W(Dz) C(Dz) and ay(W())

0 i 9,
(ii) a(W() +n ay(W())-n in {H/Z()z}".
We denote by ay(W())n the same values

a(W())+n and a(W())-n by Lemma 1 (ii).
If we find --oo () satisfying

(4.6) a(W())n g,
then W() is regarded as a solution to Problem
1 by this lemma. Indeed, we find the density
function satisfying (4.6) as the following manner.
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T.. 1/2Define a bilinear form on--oo (2) by
b(q, )"= (a(W())n,

then we find that the bilinear form is symmetric,

Hcontinuous and coercive on (), and we
have the following theorem.

Theorem 2. Suppose g {H ()}’, then
there uniquely exists H () such that

b(, ) (g, br all H().
5. Sucture of the lufion. In order to de-

fine S.I.F.’s, we specify the structure of the dis-

placement field by calculating behaviors of W()
in the neighborhoods B(S) "= {z
( } (j 1,2), where the constant 0 is so
small that B(S) B(S)

We introduce local coordinates x )
with their origins S and we assume the coordin-
ates satisfy that

(j)
(i) the x -axis is tangential to the crack

at the end point S,
(ii) the crack lies in
( 0} locally near S,

(j) (j)
with the orthogonal basis e,
1,2).

If we assume suitable regularity of the given
traction g, we find singularity of the density
function by using the pseudo-differential oper-
ator theory. We summarize the procedure as fol-
lows: We regard the operator mapping to

a(W())n as a pseudo-differential operator
which has a principal symbol

and we obtain the singularity of by the
Wiener-Hoph method shown in skin [1].

Theorem 3. Suppose g H/(), then the
/solution *-oo () to (4.6) has the following

fo
3/2 2(5 7) s + , --oo ()

(5.8) Z

where the distance between x and the eud
point S is deuoted by r, (j 1,2).

Remark 4. Wendland and Sephan show simi-
lar result in [B], but their eession of the coefficients
of singular term has no meaning as S.LF.

We obtain asymptotic behavior of the dis-
placement field near crack tips from the solution
to the Problem 1 represented by the elastic dou-
ble layer potential W().

Theorem 4. Suppose g H1/2() 2, then the
solution u W(q) has the following form: u Us
/ UR, UR IoB,(S,) H2 (,2r. (’l B (S)) 2,

(
Us e sin ( cos 0)

() / sin()(+2+cos0)
+ , r

cos (-- 2+cos
( + 3) /( + ),
+ (r) < 0 < + (r), & B(S), ,2.

Here, (r, 0) deotes the polar coordinate wth ts
center S for each j, ad 0 (r) is defied as the
agle betwee the eative part of the x -axis ad

a point x .
The structure of the displacement shown in

the last theorem is similar to that of the straight

crack problem except for the range of the angle.
Therefore it is natural ha we define S.I.F.’s for
the curved crack problem through the coefficients
of the singular terms which are shown in the last

/((J) /C (j)
theorem. Indeed, if we define **i and *-ii by

j) I,- (j) 1((j) I,- (j)
’"1 "*XlI "’2

/2rr/z x + 1 and v/2rr/z t + 1’ J 1,2

/ (J) /t (j)
using the coefficients ,1 and ,2 given in the
Theorem 3, the expression of the displacement
field corresponds to the straight crack case.
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