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§1. Introduction.

1.1. Let G be a real reductive linear Lie group,
K a maximal compact subgroup of G, and 6 the
corresponding Cartan involution. Suppose that H
is a closed f-stable subgroup of G with finitely
many connected components. Then the coset
space G/ H is called a homogeneous manifold of ve-
ductive type. Riemannian symmetric spaces (e.g.
GL(n, R) /0O()), semisimple Lie group man-
ifolds (e.g. GL(n, R) /{e} = GL(n, R) X GL(n,
R) /diag GL(n, R)), or more generally, reduc-
tive symmetric spaces (e.g. GL(n, R) /O(p, n —
p)), and semisimple orbits in semisimple Lie
algebras under the adjoint action (e.g. GL(n, R) /
GL(n,, R) X -+ - X GL(n,, R) (X n; = n)) are
typical examples of homogeneous manifolds of re-
ductive type. Various geometric structures of
homogeneous manifolds of reductive type may be
found in the survey [7] and references therein.
1.2. If G/H is of reductive type, then there ex-
ists a G-invariant measure du on G/ H, which is
unique up to a scalar multiple. Then we have a
continuous representation of G on the Banach
space L'(G/H ;dp) = L"(G/H) (p = 1) by left
translations. A fundamental problem in L
analysis on a homogeneous manifold G/H is to
construct an irreducible representation of G in a
closed G-invariant subspace of L’(G/H). In
particular, if p = 2, then G acts unitarily on the
Hilbert space L*(G/H) and an irreducible rep-
resentation 7 of G is called a discrete series repre-
sentation for G/ H, provided 7 is realized in a
closed G-invariant subspace of L*(G/H). Dis-
crete series representations are automatically un-
itary and we denote by Disc(G/H) the unitary
equivalence classes of discrete series representa-
tions for G/H. By definition, Disc(G/H) < G,
where G denotes the unitary dual of G.
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1.3. It is a celebrated work due to Harish-Chandra

that Disc(G/{e}) # @ iff rank G = rank K.

Generalizing this, Flensted-Jensen, Matsuki and

Oshima proved in [1] and [12] that Disc(G/H)

+ 0 iff

(1.3.1) rank G/H=rank K/HN K

for a reductive symmetric space G/H (see §3.2

for definition).

1.4. However, except for reductive symmetric

spaces, our current knowledge about the exist-

ence of discrete series representations for G/ H

(or more generally, the existence of irreducible

representations in L”(G/H)) is very poor. This

is partly because the known methods relied on

i) the commutativity of G- invariant differential
operators on G/ H,

ii) a Cartan decomposition G = KAH ([1], §2),

iii) the dual space G*/H? (see [2] for the nota-
tion).

In our more general setting where G/ H is of
reductive type, (i) may fail, and neither (ii) nor
(ii1) always exists.

Thus, we need a new method to investigate
the Lp—analysis on G/H for a general homo-
geneous manifold of reductive type. Our approach
in this paper is based on the recent theory of the
discrete decomposable restriction of unitary rep-
resentations ([5] and [6]), and on a comparison
theorem of two homogeneous manifolds (Theorem
2.7) together with well-developed results on re-
ductive symmetric spaces ([1], [2], and [12]).

§2. Invariant measure on homogeneous man-
ifolds of reductive type.

2.1. For a reductive symmetric space G/H,
there is a generalized Cartan decomposition
“G = KAH" with A = R', which is an analog of
the polar coordinate in the Euclidean space.
Then, the corresponding integration formula ([1],
Theorem 2.6) is a basic tool on harmonic analy-
sis on a symmetric space G/H, because the
L’ -estimate of functions on G/H can be studied
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by the decay condition along the abelian part
A=R"

Unfortunately, there does not always exist
an analog of a generalized Cartan decomposition
G = KAH in our general setting where G/H is
of reductive type, as one can easily observe by
an argument of dimension (e.g. the case where
dim H is very small).

Thus, in order to give an L’ _estimate of
functions on G/ H, we need a nice estimate of the
invariant measure on G/H without using the
KAH decomposition, which is the main goal of
this section.

Let us fix some notation. Let g =t + p be a

Cartan decomposition of the Lie algebra g of G
corresponding to a Cartan involution 6 of G, and
we fix an Ad(G)-invariant non-degenerate sym-
metric bilinear form B on g such that B |, is
negative definite, B |po is positive definite and
that £ and p are orthogonal to each other (e.g. we
can take B to be the Killing form if g is semisim-
ple). We write | X| (X € p) for the induced
norm on p.
2.2. Suppose G/H is a homogeneous manifold
of reductive type. We write § for the Lie algebra
of H. Then the restriction B'bxf) is non-
degenerate. Let f)l be the orthogonal com-
plementary subspace of § in g. Then, we have a
direct sum decomposition g = § + [)l.

Theorem 2.2. Let G/H be a homogeneous
manifold of reductive type. Then there exists a
non-negative function 0 : f)l N p— R such that

[ r@au@ = [ [ fe* 0600 dkdx
G/H K Y5t Nyp
forany f € C.(G/H).

Herve dk is the bi-invariant measure on K and dX
is the Lebesgue measure on f)l N p. Furthermore,
there exist constants vg,y > 0 and C > 0 such
that
0(X) < Cexplygul XD for any X € 5° N .
Remark 2.3. One can prove that there ex-
ists a constant ¥ = p(G) such that yg,; < v for
any 0-stable closed subgroup H with finitely
many connected components.
2.4. Given &€ € R, we introduce a subspace of
continuous functions on G/H :

C(G/H ;9:=1{fe€ C(G/H) :sup sup

keK Xepnpt
flkexp Xexp(&| X|) < oo},
There is an obvious inclusive relation C(G/H ;&)
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C C(G/H ;&) for § > &

Corollary 2.4. Let G/H be a homogeneous
manifold of reductive type. If 1 < p < 0, then we
have

C(G/H ;8 C L’ (G/H) ifp & > vg .

We put C"(G/H ;& :=C(G/H ;9 N
C”(G/H). We say that an admissible irreduci-
ble representation 7@ of G is of decay type & for
G/ H if the underlying (g, K)-module 7, can be
realized as a subrepresentation of C*(G/H ;&).

1
If 7 is of decay type & for G/H with § > 5 Yerm

then my is unitarizable and Disc(G/H) # @ by
Corollary 2.4.
2.5. Next, we give a comparison theorem of in-
variant measures of two homogeneous manifolds
G'/H’ € G/H. Consider the following setting:
G is a real reductive linear Lie group with a Car-
tan involution 6 ; both H and G’ are @-stable
closed subgroups of G with finitely many con-
nected components. Let H’ := H N G’. Then
G’ /H’ is also of reductive type. We write ¢:
G'/H’ < G/H for the natural embedding, and
. C(G/H) — C(G'/H’) for the pullback of
continuous functions.
2.6. In the setting of §2.5, we write g and Y’
for the Lie algebras of G’ and H’, respectively.
We put p’ :=g N p, and define §* to be the
orthogonal complement of §” in g" with respect to
B |q,xg,. Then, we have direct sum decompositions
g=0Py" and p= (@ N p) D G Nyp). We
define
(26.1) b(G'/H';G/H):=sin¢(@ Ny, 5N p).
Here, (0 <) ¢(@ Ny, 5N p) (S g) is the angle
between the subspaces of p, " N p” and § N p.
Lemma 2.6. If G'/H’ is noncompact, then
b(G'/H’; G/H) > 0.
2.7. Here is a comparison theorem that gives an
estimate of the decay of a function on G/H res-
tricted to a submanifold G'/H’.
Theorem 2.7. Let b:= b(G'/H';G/H) be
the constant given in (2.6.1). Then
(*C(G/H ;8 < C(G'/H'; b§) for any € = 0.
Corollary 2.8. Retain the setting of Theorem
2.7. Let vg g be the constant given in Theorem
2.2. Then forany 1 < p < 00, we have
(*C(G/H ;8 < L*(G'/H") if bpE > v m-
§3. Irreducible representations in L’ (G/H).
In this section, we investigate a sufficient condi-
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tion for the existence of irreducible representa-
tions realized in closed subspaces of L°(G/H).
In particular, we construct new discrete series
representations which play a fundamental role in
the non-commutative harmonic analysis on G/ H.
3.1. Suppose G € G are real reductive Lie
groups with maximal compact groups K’ C K.
We say that 7 € G is K'-admissible if
dim Homy, (7, 7|,) < o for any 7 € K.

Then we also say that the underlying (go, K)-
module 7y is K’'-admissible. Suppose we are in
the setting 2.5 and 2.6. Let b= b(G'/H'; G/H).
Here is a key lemma in the proof of Theorem 3.5,
the main result in this section:

Lemma 3.1. Let 1 € G be K'-admissible. If
7 is of decay type & for G/ H, then there exists T €
G that is of decay type b€ for G’/ H'.

This lemma follows directly from an algeb-
raic result in representation theory ([5], Part III,
Proposition 1.6).

3.2. Let t be a Cartan subalgebra of £. We fix a
positive system A* (£, t). Let 7 be an involutive
automorphism of G, and G’ an open subgroup of
G :={ge G:7g =g} Then (G, G') is called
a reductive symmetric pair. The homogeneous man-
ifold G/ G’ is called a reductive symmetric space
(or a semisimple symmetric space if G is semisim-
ple). We say that 7 is i a standard position with
respect to A”(E, t) if the following four condi-
tions are satisfied:

(3.2.1) 760 = 0O7.

(3.2.2) =(t) = t.

(3.2.3) t “is a maximal abelian subspace in £ .
3.2.4) {a)—:ax € AT (g, )} \ {0} defines a posi-
tive system > (€, t7) of (¢, t77).

Here, we wrote m” = {X € m:7X= — X}
for a subspace m of g.

3.3. Given an element X € Y— 1t, we define a
f-stable parabolic subalgebra

g=legtu=1X)+ ulX) (Cg

such that [, and u are the sum of eigenspaces
with O and positive eigenvalues of ad(X) €
End(g.), respectively. Then [, is the complex-
ification of the Lie algebra of L = Z,(X), the
centralizer of X in G. We write A (4) for the
Zuckerman's derived functor (g, K)-module for
a metaplectic L™ -character C, in the good range
(see [3)]).

We say that q is in a standard position for a
fixed positive system A" (¢, t) if X sits inside a
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dominant chamber with respect to 4" (£, t). We
denote by R,<u N pg> the cone in v— 1 t* de-
fined by the R -span of 4(u N pg, t).

Fact 3.3. Suppose (G, G") is a veductive
symmetric pair defined by an involution T in a stan-
dard position with respect to A™ (€, t). Suppose q is a
B-stable parabolic subalgebra in a standard position
with respect to AT(€, t). Then the following three
conditions on (q, G, G’) are equivalent:

1) R.<uNpey Ny— 1 = {0}.

2) The restriction of A (A) to K’ is K'-admissible.
3) Aq(l) is decomposed into an algebraic sum of
irreducible (g', K')-modules.

Proof. See [5], Part I, Theorem 3.2 for (1)

= (2); and [5], Part III, Theorem 4.2 for other
implications. ]
3.4. Let (G, H) and (G, G") be reductive sym-
metric pairs defined by ivolutive automorphisms
o and 7 of G, respectively, which are in a stan-
dard position with respect to A" (f, t). We em-
ploy an analogous notation of 83.2 for o. If
(1.3.1) is satisfied, then t~° is a maximal abelian
subspace in g °. We denote by W(g, t°) D
W, t™°) the Weyl groups of X(gt %) D
(£, t7%), respectively. Fix a positive system
Z+(g, t™°) which contains > (£t ). A 6-
stable parabolic subalgebra q = q(X) = [+ 1
is attached by a strictly dominant element X €
V=1 t° with respect to 2 (g, t*°) (see §3.3).
For each w € W(t, t°) \ W(g, t ), we choose a
representative m, € K such that Ad(m,)X is
dominant with respect to AY (%, t), and define a
f-stable parabolic subalgebra ¢“:= Ad(m,)q =
¢ + u”, where u” := Ad(m,)u.
3.5. We write pr,_, : gz—-* g’z for the natural
projection. We denote by Ass(w) C g’z the
associated variety of a (g, K’)-module 7 of fi-
nite length.

Theorem 3.5. Let G/H be a reductive sym-
melric space satisfying (1.3.1). Retain the wnotation
m 83.4. We assume that there w e
W, ™)\ W(g, t°) such that

R. " Npey NyV=1G D" = {0},

We put H:= G’ N xHx " for x € K. Then
the following statements hold :

1) For any x € K, there exists an irreducible (g,
K') -module  such that
(3.5.1)Ass(m) D pr,_, Ad(Ko) (” N pe),
(3.5.2) Homg,, - (7, C*(G/H) N

N L*(G’'/H)) # {0}.

1<p=<e

extists
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In particular, Disc(G'/H)) + @ foranyx € K.
2) Assume moreover that Zg(t™°) is compact. Then
Disc(G'/H)) N Disc(G") # B for anyx € K.

The point here is that G'/H] gives different
homogeneous manifolds of reductive type as x €
K varies. In general, G’ /H] is non-symmetric. A
recent study of the double coset decomposition
G"\ G/G’ by Matsuki ([10] and [11]) helps us to
compute explicitly the isotropy subgroup H.

Example 3.6. The assumptions of Theorem
3.5 are satisfied, if the triple of Lie groups
(G, H, G) = (G, G°, G") is one of the follow-
ing cases:

(U©2p, 29), Sp(p, ), UG, 1) x U@p—1,2¢—1)),

0@,q9), Om)x0@p—mq), 0p,q—1x0),
U, 9, UmxUp-—mq, Ulp,q—7 xUl),
(Spp, @),  Splm) X Sp(p—m, @), Spp, g— 1 X Sp(n),

where 0 <1< 2p,0<;<2p,0=<2m < p and
0 <7< gq We note that ¢ does not commute
with 7 if 7 or 7 is odd in the first case.

Remark 3.7. The special case where dim H
+ dim G’ = dim G + dim(H N G’) (and x = e)
was studied in [5], Corollary 5.6, where we dealt
with so-called the (non-symmetric)
homogeneous spaces.

Example 3.8. The homogeneous manifolds
G/H=0Um, n)/UC2m,j, (02 < n)
admit discrete series representations. This was
previously known when # =25 and 25— 1,
where G/H is a semisimple symmetric space,
and a non-symmetric spherical homogeneous

space, respectively. Other cases are new.

§4. Holomorphic discrete series representa-

tions.
4.1. In this section, we investigate a nice subset
of Disc(G/H), namely, “holomorphic discrete
series representations for G/H”. As in Theorem
3.4, analogous results in this section hold for
L’ -representations (1 < p < o), but we restrict
to the case of p = 2 for simplicity.

We assume that G/K is an irreducible
Hermitian symmetric space. Equivalently, G is
simple and the center ¢(£) of £ is one dimensional.
Then we can take Z € c¢(f) so that

gc=tcDp Dy~
are 0,vY— 1 and — v— 1 eigenspaces of ad Z.
For # € G. we say that 7 is a highest weight
module if there exists a non-zero vector in the
underlying (g, K)-module annihilated by p*. We
denote by G,, (S G) the unitary equivalence

spherical
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class of irreducible unitary highest weight mod-

ules. Then an element of Disc(G/H) N G,,. is

called a holomorphic discrete series vepresentation

for G/H. This terminology coincides with the

usual one if H = {e}. Lowest weight modules and

anti-holomorphic discrete series representations

are defined similarly with p* replaced by p_.
Suppose 7 is an involutive automorphism of

G commuting with 6. Since 7c(£) = ¢(f), there are

two exclusive possibilities:

(4.1.1) L =2,

(4.1.2) Z=—Z.

We note that the induced action of 7 on G/K is

holomorphic for (4.1.1); anti-holomorphic for
(4.1.2).
4.2. Retain the setting of §4.1. Let o be an in-

volutive automorphism of G satisfying 00 = 6o
and 0Z = — Z (see (4.1.2)), and x € K. We con-
sider the following two settings:

Setting 1: L,:={g€ G :xo(g)x_l = g}.

Setting 2: Let 7 be an involutive auto-
morphism of G satisfying (4.1.1) and G’ := G".
We put H,:= G° N G’z "

Here is an existence theorem of holomorphic
discrete series representations for homogeneous
manifolds of reductive type.

Theorem 4.2. For any x € K, we have
# (Disc(G/L,) N Disc(G) N G,,) =

in Setting 1,
# (Disc(G’/H.) N Disc(G) N G,,) =

in Setting 2.
4.3. A very special case (i.e. x = e in Setting 1)
leads to a new and elementary proof of the fol-
lowing result due to Olafsson and Orsted:

Corollary 4.3 (see [13]). There exist (infinite-

ly many) holomorphic discrete series representations
for a psend-Riemannian symmetric space of Hermi-
tian type.
4.4. Choosing x € K, 7 and o0, we can obtain a
number of new holomorphic discrete series repre-
sentations for homogeneous manifolds of reduc-
tive type (G/L, and G’'/H}). For instance, we
have:

Example 4.4. The homogeneous manifolds
G/H = Sp@2n, R) /(Sp(n,, C) X GL(n,, C)
X -+ x GL(n,, C)) (Zn;,=n)
admit holomorphic discrete series representa-
tions. We note that G/H is a semisimple sym-
metric space if and only if n, =n, = -+ = n,

= 0, which is previously the known case.
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