Circular Geodesic Submanifolds with Parallel Mean Curvature Vector in a Non-flat Complex Space Form

By Sadahiro MAEDA^{*} and Ryoichi TAKAGI^{**}

(Communicated by Heisuke HIRONAKA, M. J. A., April 14, 1997)

1. Introduction. Let $f : M \to \tilde{M}$ be an **Theorem.** Let M be a circular geodesic sub-
isometric immersion of a connected complete *manifold of a non-flat complex space form* $\tilde{M}^{N}(c)$. Riemannian manifold M into a Riemannian man-
ifold \tilde{M} . We call M a *circular geodesic* subman-
rallel with respect to the normal connection on the ifold of \overline{M} provided that for every geodesic γ of normal bundle $T^{\perp}M$ of M in $\overline{M}^{N}(c)$. Then M the curve $f(\gamma)$ is a circle in \overline{M}^{N} . It is parallel second fundamental form in $\widetilde{M}^{N}(c)$. M the curve $f(\gamma)$ is a circle in \overline{M} . It is parallel second fundamental form in $\overline{M}^N(c)$.
well-known that a round sphere is the only 2. **Preliminaries.** First we recall the nowell-known that a round sphere is the only circular geodesic surface in \mathbb{R}^3 . This result is tion of circles in a Riemannian manifold \tilde{M} . A generalized as follows: M^n is a circular geodesic curve $\gamma(s)$ of \tilde{M} parametrized by arclength s is submanifold of a real space form $\tilde{M}^{n+\rho}(c)$ of called a *circle* of curvature k, if there exists a curvature c (that is, $\tilde{M}^{n+\rho}(c) = \mathbf{R}^{n+\rho}$, $S^{n+\rho}(c)$ or field of unit vectors Y_s along the curve γ which $\mathbf{R}H^{n+\rho}(c)$) if and only if M^n is totally umbilic in satisfies the differential equations: ∇ $\boldsymbol{R}H^{n+p}(c)$ if and only if \boldsymbol{M}^n is totally umbilic in $\tilde{\boldsymbol{M}}^{n+p}(c)$ or \boldsymbol{M}^n is locally congruent to one of the compact symmetric spaces of rank one which is and $\nabla_{\dot{r}}$ denotes the covariant differentiation immersed into $\tilde{M}^{n+p}(c)$ with parallel second fun- ∇ along γ . Next we review the notion of CR-subimmersed into $\tilde{M}^{n+p}(c)$ with parallel second fundamental form (see, [8]). manifolds of ^a Kaehler manifold. A Riemannian

problem of circular geodesic submanifolds in a complex structure J is called a CR -submanifold if complex space form $\tilde{M}^N(c)$ of constant holomor- there exists on M a C^{∞} -holomorphic distribution complex space form $\tilde{M}^{N}(c)$ of constant holomor-
phic sectional curvature c (that is, $\tilde{M}^{N}(c) = \mathbf{C}^{N}$, \mathbf{D} satisfying its orthogonal complement \mathbf{D}^{\perp} is a of circular geodesic submanifolds in a non-flat any $p \in M$. We note that all holomorphic sub-
complex space form $\tilde{M}^{N}(c)$ is still open. In a manifolds, totally real submanifolds and real complex space form $\tilde{M}^{N}(c)$, all examples of circu- hypersurfaces are necessarily CR-submanifolds. lar geodesic submanifolds what we know are pa- The manifold M is said to be a λ -isotropic subrallel submanifolds (for details, see [4]). Needless manifold of \tilde{M} provided that $\|\sigma(X, X)\|$ is equal circular geodesic. The classification problem of X at its each point, where σ is the second fun-

the problem "In a complex space form $\tilde{M}^{N}(c)$ We remark that these two definitions are coin- $(c \neq 0)$, does a circular geodesic submanifold cidental, when *codim* $M=1$. have parallel second fundamental form?". We We now prepare the following three lemmas here give an affirmative partial answer to this without proof in order to prove our Theorem: problem. The main purpose of this paper is to Lemma 1 ([2]). Let M be a Riemannian subprove the following. Then the following two conditions manifold of \tilde{M} . Then the following two conditions

manifold of a non-flat complex space form $\tilde{M}^{N}(c)$. rallel with respect to the normal connection on the normal bundle $T^{\perp}M$ of M in $\tilde{M}^N(c)$. Then M has

called a *circle* of curvature k , if there exists a $\bm{R}H^{n+p}(c)$) if and only if M^n is totally umbilic in satisfies the differential equations: $\nabla_{\dot{r}} \dot{\gamma} = kY_s$
 $\tilde{M}^{n+p}(c)$ or M^n is locally congruent to one of the and $\nabla_{\dot{r}}Y_s = -k\dot{\gamma}$, where k is a positi In this paper, we consider the classification submanifold M of a Kaehler manifold M with phic sectional curvature c (that is, $\tilde{M}^N(c) = C^N$, Φ satisfying its orthogonal complement Φ^{\perp} is a
 $\mathbb{CP}^N(c)$ or $\mathbb{CP}^N(c)$). The classification problem totally real distribution, i.e., $J\Phi^{\perp}_p \subseteq T^{\perp$ \mathfrak{D} satisfying its orthogonal complement \mathfrak{D}^{\perp} is a manifolds, totally real submanifolds and real to say, a parallel submanifold is not necessarily to a constant $(=\lambda)$ for all unit tangent vectors parallel submanifolds in a non-flat complex space damental form of M in \tilde{M} ([7]). In particular, the form was solved by Nakagawa, Naitoh, and Taka- function λ is constant on M , the immersion is gi ([5] and [6]). Said to be $(\lambda -)$ constant isotropic. The notion of Along this context, it is natural to consider isotropic is a generalization of "totally umbilic".

are equivalent:

 $A^{*(k)}$ Department of Mathematics and Informatics, (ii) The submanifold M is nonzero constant isotropic

^{*)} Department of Mathematics, Shimane Uni-
(i) M is a circular geodesic submanifold of \tilde{M} . versity.

Chiba University.
Chiba University. \overline{M} is $\overline{$

cyclic parallel, that is, σ satisfies

$$
(\bar{\nabla}_X \sigma)(Y, Z) + (\bar{\nabla}_Y \sigma)(Z, X) + (\bar{\nabla}_Z \sigma)(X, Y) = 0
$$

for all vecter fields X, Y, and Z on M, where $\bar{\nabla}$ is the covariant differentiation of the second fundamental form σ .

Let M be an n-dimensional Riemannian submanifold in an N -dimensional complex space form (with complex structure J) $\tilde{M}^{N}(c)$ of constant holomorphic sectional curvature c . We here write the equation of Codazzi for M in $\tilde{M}^{N}(c)$:

(2.1)
$$
(c/4)\{\langle JY, Z\rangle JX - \langle JX, Z\rangle JY + 2\langle X, JY\rangle JZ\}^{\perp}
$$

$$
= (\bar{\nabla}_X \sigma)(Y, Z) - (\bar{\nabla}_Y \sigma)(X, Z),
$$

where $\{*\}^{\perp}$ means the normal component of $\{*\}$. From 1 and (2.1) we get

Lemma 2 ([2]). Let M be a Riemannian submanifold in a complex space form $\tilde{M}^N(c)$ of constant holomorphic sectional curvature c with complex structure J . Then the following are equivalent:

(i) The second fundamental form σ of M in $\tilde{M}^N(c)$ is cyclic parallel.

(ii) $(\bar{\nabla}_x \sigma)(Y, Z) = (c / 4) \{ \langle X, JY \rangle JZ + \langle X, Y \rangle JZ \}$ $JZ\rangle JY$ ^{\perp} for all vector fields X, Y and Z tangent to M.

The following is a key lemma for our Theorem.

Lemma 3 ([2]). Let M be a circular geodesic CR -submanifold in a complex space form $\tilde{M}^{N}(c)$. Then the second fundamental form σ of M in $\tilde{M}^N(c)$ is parallel.

3. Proof of theorem. We have only to show the following

Lemma 4. Let M be an n -dimensional Riemannian submanifold with parallel mean curvature vector in a complex space form $\tilde{M}^N(c)$. Suppose that the second fundamental form of M in $\widetilde{M}^{N}(c)$ is cyclic parallel. Then M is a CR-submanifold of $\tilde{M}^{N}(c)$. Moreover, for each $x \in M$, $T_{x}^{\perp}(M)$ is de- $T_x^{\perp}(M)=V_x\oplus V_x^{\perp}$, where JV_x $V_x, V_x^{\perp} = J \mathfrak{D}_x^{\perp}$ and $\mathfrak{D}^{\perp} : p \to \mathfrak{D}_p^{\perp}$ is the totally distribution of M.

Proof. First of all we define the tensor ϕ : $TM \to TM$ as $\phi(X) = (JX)^T$ for any $X \in TM$, where $(*)^T$ is the tangential component of $(*).$ We set $U = \phi(TM)$. For an arbitrary fixed point $x \in M$, let $\{e_1, \dots, e_n\}$ be an orthonormal basis of $T_x(M)$. Then $U_x = Span{ ((Je_1)^T}$, $(Je_2)^T$, \cdots , $(Je_n)^T$. It follows from the statement (ii) in Lemma 2 that

$$
(3.1) \ 0 = \sum_{i=1}^{n} \left(\bar{\nabla}_{X} \sigma \right) (e_{i}, \ e_{i}) = 2 \sum_{i=1}^{n} \left\langle X, \, Je_{i} \right\rangle (Je_{i})^{\perp}.
$$

Here and in the following we choose an orthonormal basis $\{e_1, \dots, e_p, \dots, e_n\}$ of $T_x(M)$ in such a way that $U_x = Span\{e_1, \dots, e_p\}$. We consider the decomposition of $T_x(M)$ as: $T_x(M) = U_x \oplus$ U_x^{\perp} , where U_x^{\perp} is the orthogonal complement of U_x in $T_x(M)$. We shall show that $JU_x = U_x$. From (3.1) we have

$$
0 = \sum_{i=1}^{n} \langle X, Je_i \rangle (Je_i)^{\perp}
$$

= $-\sum_{i=1}^{n} \langle (JX)^T, e_i \rangle (Je_i)^{\perp}$
= $-\sum_{a=1}^{p} \langle (JX)^T, e_a \rangle (Je_a)^{\perp}$.
For any $e_a(a = 1, \dots, p)$ we can choose $X(\in$

 U_x) with $(JX)^T = e_a$. Then the above equation
yields $(Ie_a)^{\perp} = 0$ $(a = 1, \dots, p)$ so that $JU_x =$
 U Novt for e $(r = b + 1, \dots, p)$ and e $(i =$ U_x . Next, for $e_r(r=p+1,\cdots,n)$ and $e_i(i=$ $1, \cdots, n$) we find that $0=\langle Je_i, e_r\rangle =-\langle ee_i,$ Je_r), which implies that $JU_x^{\perp} \subseteq T_x^{\perp}(M)$ so that $dim U_r$ is constant for any $x \in M$. Therefore our manifold is a CR-submanifold of $\tilde{M}^N(c)$. We shall show the latter half of Lemma 4. We decompose $T_x^{\perp}(M)$ as: $T_x^{\perp}(M) = (JU_x^{\perp})^{\perp} \bigoplus JU_x^{\perp}$, where $(\tilde{J}U_{x}^{\perp})^{\perp}$ is the orthogonal complement of JU_{x}^{\perp} in $T_x^{\perp}(M)$. We set $V_x = (JU_x^{\perp})^{\perp}$ so that V_x^{\perp} $J\tilde{U}_x^{\perp}$, where V_x^{\perp} is the orthogonal complement of V_x in $T_x^{\perp}(M)$. By the above discussion for any X V_x we know that JX is perpendicular to V_x
and $T_x(M) (= U_x \oplus U_x^{\perp})$ so that $JV_x = V_x$ Thus we get the conclusion.

By virtue of Lemma 1, Lemma 3, and Lemma 4 we obtain our Theorem.

4. Problem. Motivated by our Theorem we pose the following.

Problem. Let M be a circular geodesic submanifold of a non-flat complex space form $\tilde{M}^{N}(c)$. If the length of the mean curvature vetor of M in $\tilde{M}^{N}(c)$ is constant, is the second fundamental form of M in $\tilde{M}^N(c)$ parallel?

When $dim M = 2$, this problem was solved affirmatively (see, [3]).

References

- [1] Y. Kitagawa and Y. Ohnita: On the mean curvatures of R -spaces. Math. Annalen, 262, 239-243 (1983).
- [21 S. Maeda and N. Sato: On submanifolds all of whose geodesics are circles in a complex space form. Kodai Math. J., 6, 156-166 (1983).
- [31 S. Maeda and S. Udagawa: Surfaces with con-

stant Kaehler angle all of whose geodesics are circles in a complex space form. Tokyo J. Math., 13, 341-351 (1990).

- [4] H. Naitoh: Isotropic submanifolds with parallel second fundamental form in $P^m(c)$. Osaka J. Math., 18, 427-464 (1981).
- [51 H. Naitoh: Totally real parallel submanifolds in $P^{n}(c)$. Tokyo J. Math., 4, 279-306 (1981).
- [6] H. Nakagawa and R. Takagi: On locally symmetric Kaehler submanifolds in a complex projective

space. J. Math. Soc. Japan, 28, 638-667 (1976).

- [7] B. O'Neill: Isotropic and Kaehler immersions. Canad. J. Math., 17, 905-915 (1965).
- [8] K. Sakamoto: Planar geodesic immersions. T6hoku Math. J., 29, 25-56 (1977).
- [9] Y. Shimizu: On ^a construction of homogeneous CR-submanifolds in a complex projective space. Commentarii Math. Univ. Sancti Pauli, 32, 203-217 (1983).