Circular Geodesic Submanifolds with Parallel Mean Curvature Vector in a Non-flat Complex Space Form

By Sadahiro MAEDA^{*)} and Ryoichi TAKAGI^{**)}

(Communicated by Heisuke HIRONAKA, M. J. A., April 14, 1997)

1. Introduction. Let $f: M \to \tilde{M}$ be an isometric immersion of a connected complete Riemannian manifold M into a Riemannian manifold \tilde{M} . We call M a *circular geodesic* submanifold of \overline{M} provided that for every geodesic γ of M the curve $f(\gamma)$ is a circle in \tilde{M} . It is well-known that a round sphere is the only circular geodesic surface in \mathbf{R}^3 . This result is generalized as follows: M^n is a circular geodesic submanifold of a real space form $\tilde{M}^{n+p}(c)$ of curvature c (that is, $\tilde{M}^{n+p}(c) = \mathbf{R}^{n+p}$, $S^{n+p}(c)$ or $RH^{n+p}(c)$ if and only if M^{n} is totally umbilic in $\tilde{M}^{n+p}(c)$ or M^{n} is locally congruent to one of the compact symmetric spaces of rank one which is immersed into $\tilde{M}^{n+p}(c)$ with parallel second fundamental form (see, [8]).

In this paper, we consider the classification problem of circular geodesic submanifolds in a complex space form $\tilde{M}^{N}(c)$ of constant holomorphic sectional curvature c (that is, $\tilde{M}^{N}(c) = C^{N}$, $CP^{N}(c)$ or $CH^{N}(c)$). The classification problem of circular geodesic submanifolds in a non-flat complex space form $\tilde{M}^{N}(c)$ is still open. In a complex space form $\tilde{M}^{N}(c)$, all examples of circular geodesic submanifolds what we know are parallel submanifolds (for details, see [4]). Needless to say, a parallel submanifold is not necessarily circular geodesic. The classification problem of parallel submanifolds in a non-flat complex space form was solved by Nakagawa, Naitoh, and Takagi ([5] and [6]).

Along this context, it is natural to consider the problem "In a complex space form $\tilde{M}^{N}(c)$ $(c \neq 0)$, does a circular geodesic submanifold have parallel second fundamental form?". We here give an affirmative partial answer to this problem. The main purpose of this paper is to prove the following. **Theorem.** Let M be a circular geodesic submanifold of a non-flat complex space form $\tilde{M}^{N}(c)$. Suppose that the mean curvature vector of M is parallel with respect to the normal connection on the normal bundle $T^{\perp}M$ of M in $\tilde{M}^{N}(c)$. Then M has parallel second fundamental form in $\tilde{M}^{N}(c)$.

2. Preliminaries. First we recall the notion of circles in a Riemannian manifold \dot{M} . A curve $\gamma(s)$ of \tilde{M} parametrized by arclength s is called a *circle* of curvature k, if there exists a field of unit vectors Y_s along the curve γ which satisfies the differential equations: $\nabla_{\dot{r}} \dot{\gamma} = k Y_s$ and $\nabla_{\dot{r}}Y_s = -k\dot{\gamma}$, where k is a positive constant and $\nabla_{\dot{r}}$ denotes the covariant differentiation ∇ along γ . Next we review the notion of CR-submanifolds of a Kaehler manifold. A Riemannian submanifold M of a Kaehler manifold M with complex structure J is called a CR-submanifold if there exists on M a C^{∞} -holomorphic distribution \mathfrak{D} satisfying its orthogonal complement \mathfrak{D}^{\perp} is a totally real distribution, i.e., $J\mathfrak{D}_{p}^{\perp} \subseteq T_{p}^{\perp}(M)$ for any $p \in M$. We note that all holomorphic submanifolds, totally real submanifolds and real hypersurfaces are necessarily CR-submanifolds. The manifold M is said to be a λ -isotropic submanifold of \tilde{M} provided that $\| \sigma(X, X) \|$ is equal to a constant $(= \lambda)$ for all unit tangent vectors X at its each point, where σ is the second fundamental form of M in \tilde{M} ([7]). In particular, the function λ is constant on M, the immersion is said to be $(\lambda -)$ constant isotropic. The notion of isotropic is a generalization of "totally umbilic". We remark that these two definitions are coincidental, when *codim* M = 1.

We now prepare the following three lemmas without proof in order to prove our Theorem:

Lemma 1 ([2]). Let M be a Riemannian submanifold of \tilde{M} . Then the following two conditions are equivalent:

(ii) The submanifold M is nonzero constant isotropic and the second fundamental form σ of M in \tilde{M} is

^{*)} Department of Mathematics, Shimane University.

^{**)} Department of Mathematics and Informatics, Chiba University.

⁽i) M is a circular geodesic submanifold of M.

cyclic parallel, that is, σ satisfies

$$(\bar{\nabla}_{X}\sigma)(Y, Z) + (\bar{\nabla}_{Y}\sigma)(Z, X) + (\bar{\nabla}_{Z}\sigma)(X, Y) = 0$$

for all vecter fields X, Y, and Z on M, where $\overline{\nabla}$ is the covariant differentiation of the second fundamental form σ .

Let M be an n-dimensional Riemannian submanifold in an N-dimensional complex space form (with complex structure J) $\tilde{M}^{N}(c)$ of constant holomorphic sectional curvature c. We here write the equation of Codazzi for M in $\tilde{M}^{N}(c)$: (2.1) $(c/4) \{\langle IY, Z \rangle IX - \langle IX, Z \rangle IY \}$

$$(C/4) \langle \langle JY, Z \rangle JX - \langle JX, Z \rangle JY + 2 \langle X, JY \rangle JZ \rangle^{\perp} = (\bar{\nabla}_{Y}\sigma) (Y, Z) - (\bar{\nabla}_{Y}\sigma) (X, Z).$$

 $= (V_X \sigma) (Y, Z) - (V_Y \sigma) (X, Z),$ where $\{*\}^{\perp}$ means the normal component of $\{*\}$. From 1 and (2.1) we get

Lemma 2 ([2]). Let M be a Riemannian submanifold in a complex space form $\tilde{M}^{N}(c)$ of constant holomorphic sectional curvature c with complex structure J. Then the following are equivalent:

(i) The second fundamental form σ of M in $\tilde{M}^{N}(c)$ is cyclic parallel.

(ii) $(\overline{\nabla}_X \sigma)(Y, Z) = (c/4) \{\langle X, JY \rangle JZ + \langle X, JZ \rangle JY \}^{\perp}$ for all vector fields X, Y and Z tangent to M.

The following is a key lemma for our Theorem.

Lemma 3 ([2]). Let M be a circular geodesic CR-submanifold in a complex space form $\tilde{M}^{N}(c)$. Then the second fundamental form σ of M in $\tilde{M}^{N}(c)$ is parallel.

3. Proof of theorem. We have only to show the following

Lemma 4. Let M be an n-dimensional Riemannian submanifold with parallel mean curvature vector in a complex space form $\tilde{M}^{N}(c)$. Suppose that the second fundamental form of M in $\tilde{M}^{N}(c)$ is cyclic parallel. Then M is a CR-submanifold of $\tilde{M}^{N}(c)$. Moreover, for each $x \in M$, $T_{x}^{\perp}(M)$ is decomposed as: $T_{x}^{\perp}(M) = V_{x} \oplus V_{x}^{\perp}$, where $JV_{x} =$ $V_{x}, V_{x}^{\perp} = J\mathfrak{D}_{x}^{\perp}$ and $\mathfrak{D}^{\perp}: p \to \mathfrak{D}_{p}^{\perp}$ is the totally distribution of M.

Proof. First of all we define the tensor ϕ : $TM \to TM$ as $\phi(X) = (JX)^T$ for any $X \in TM$, where $(*)^T$ is the tangential component of (*). We set $U = \phi(TM)$. For an arbitrary fixed point $x \in M$, let $\{e_1, \dots, e_n\}$ be an orthonormal basis of $T_x(M)$. Then $U_x = Span\{(Je_1)^T, (Je_2)^T, \dots, (Je_n)^T\}$. It follows from the statement (ii) in Lemma 2 that

(3.1)
$$0 = \sum_{i=1}^{n} (\bar{\nabla}_{X} \sigma) (e_{i}, e_{i}) = 2 \sum_{i=1}^{n} \langle X, Je_{i} \rangle (Je_{i})^{\perp}.$$

Here and in the following we choose an orthonormal basis $\{e_1, \dots, e_p, \dots, e_n\}$ of $T_x(M)$ in such a way that $U_x = Span\{e_1, \dots, e_p\}$. We consider the decomposition of $T_x(M)$ as: $T_x(M) = U_x \bigoplus$ U_x^{\perp} , where U_x^{\perp} is the orthogonal complement of U_x in $T_x(M)$. We shall show that $JU_x = U_x$. From (3.1) we have

$$0 = \sum_{i=1}^{n} \langle X, Je_i \rangle (Je_i)^{\perp}$$

= $-\sum_{i=1}^{n} \langle (JX)^T, e_i \rangle (Je_i)^{\perp}$
= $-\sum_{a=1}^{p} \langle (JX)^T, e_a \rangle (Je_a)^{\perp}.$

For any $e_a(a = 1, \dots, p)$ we can choose $X \in U_x$ with $(JX)^T = e_a$. Then the above equation yields $(Je_a)^{\perp} = 0 (a = 1, \dots, p)$ so that $JU_x = U_x$. Next, for $e_r(r = p + 1, \dots, n)$ and $e_i(i = 1, \dots, n)$ we find that $0 = \langle Je_i, e_r \rangle = -\langle e_i, Je_r \rangle$, which implies that $JU_x^{\perp} \subseteq T_x^{\perp}(M)$ so that $\dim U_x$ is constant for any $x \in M$. Therefore our manifold is a CR-submanifold of $\tilde{M}^N(c)$. We shall show the latter half of Lemma 4. We decompose $T_x^{\perp}(M)$ as: $T_x^{\perp}(M) = (JU_x^{\perp})^{\perp} \oplus JU_x^{\perp}$, where $(JU_x^{\perp})^{\perp}$ is the orthogonal complement of JU_x^{\perp} in $T_x^{\perp}(M)$. We set $V_x = (JU_x^{\perp})^{\perp}$ so that $V_x^{\perp} = JU_x^{\perp}$, where V_x^{\perp} is the orthogonal complement of V_x in $T_x^{\perp}(M)$. By the above discussion for any $X \in V_x$ we know that JX is perpendicular to V_x^{\perp} and $T_x(M) (= U_x \oplus U_x^{\perp})$ so that $JV_x = V_x$. Thus we get the conclusion.

By virtue of Lemma 1, Lemma 3, and Lemma 4 we obtain our Theorem.

4. Problem. Motivated by our Theorem we pose the following.

Problem. Let M be a circular geodesic submanifold of a non-flat complex space form $\tilde{M}^{N}(c)$. If the length of the mean curvature vetor of M in $\tilde{M}^{N}(c)$ is constant, is the second fundamental form of M in $\tilde{M}^{N}(c)$ parallel?

When dim M = 2, this problem was solved affirmatively (see, [3]).

References

- Y. Kitagawa and Y. Ohnita: On the mean curvatures of *R*-spaces. Math. Annalen, 262, 239-243 (1983).
- [2] S. Maeda and N. Sato: On submanifolds all of whose geodesics are circles in a complex space form. Kodai Math. J., 6, 156-166 (1983).
- [3] S. Maeda and S. Udagawa: Surfaces with con-

stant Kaehler angle all of whose geodesics are circles in a complex space form. Tokyo J. Math., **13**, 341-351 (1990).

- [4] H. Naitoh: Isotropic submanifolds with parallel second fundamental form in P^m(c). Osaka J. Math., 18, 427-464 (1981).
- [5] H. Naitoh: Totally real parallel submanifolds in $P^{n}(c)$. Tokyo J. Math., 4, 279-306 (1981).
- [6] H. Nakagawa and R. Takagi: On locally symmetric Kaehler submanifolds in a complex projective

space. J. Math. Soc. Japan, 28, 638-667 (1976).

- [7] B. O'Neill: Isotropic and Kaehler immersions. Canad. J. Math., 17, 905-915 (1965).
- [8] K. Sakamoto: Planar geodesic immersions. Tôhoku Math. J., 29, 25-56 (1977).
- [9] Y. Shimizu: On a construction of homogeneous CR-submanifolds in a complex projective space. Commentarii Math. Univ. Sancti Pauli, 32, 203-217 (1983).