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1. Introduction. After Okada gave in his define a function f
A
by

paper [7] normal bases of abelian extensions of f
A (zl, ", Zm) f(A)z, "’, A<m)zm).

Q(v/- 1 explicitly, several authors treated the For a positive integer N, let
problem of constructing normal bases of abelian Fu {A SL.(OF) "A E2 NM.(OF)}.
extensions of imaginary quadratic fields using For a non-negative integer r, a holomorphic func-
different kinds of functions (cf. [2], [4] [5], [8] tion f on is called a Hilbert modular form of
[12], and [13]).

Okada’s work is based on Damerell [1]
which treats special values of certain Hecke
L-functions of imaginary quadratic fields and
elliptic modular functions. Along the same lines,

weight r with respect to I-’N if

fA(zI,..., Zm) f (z1,’’’, Zm) II (c (9)Z9-- d(9))r
9=1

c d FN" If rn > 1, then the

we give here normal bases of abelian extensions holomorphy and the FN-invariance of f guaran-
over certain CM-fields explicitly. Our method is tee, as is well-known, that f has a Fourier
based on Shimura’s works [91 and [101 which expansion of the form f(z,"’, zm) --treat special values of certain Hecke L-functions
of CM-fields and Hilbert modular functions.

We denote as usual by Z, Q, tt and C the
ring of rational integers, the fields of rational

numbers, real numbers and complex numbers. If
R is a ring, then R denotes the multiplicative
group of all invertible elements R and Mn(R) the
ring of all matrices of size n with components in
R.

For an element A of Mn(R), we denote by
det A the determinant of A. We put SLn(R)=
{A M(R):detA 1}. We denote by E, the
identity element of M,(R).

2. Theorem and proof. Let rn be a posi-
tive integer and K a cyclic extension of Q of de-
gree 2rn which is a CM-fields. Let 0/ be the in-
teger ring of K, F the maximal real subfield of K
and a a fixed generator of the Galois group
Gal(K/Q) of K over Q. For an element a of K,

(9) r
we put c c for u Z. Let m be the pro-

2r tr z)c()e with c(e) in C, where runs over 0
and all totally positive elements of a lattice in F
and tr(z) (1) (m)z + + Zm. Let U(N) be
the set of totally positive units s of F with s ------ 1
(rnodNOF). From now on we assume r_> 3.
With a, b in OF, we define an Eisenstein series

8r(Z1," Zm a, b ;N)
m

(2rci)-mr II (C(9>Zg_t_!t(9))-r,
a:,t4 9-----1

where (w, //) runs over all equivalence classes
of pairs of elements of OF such that (cv, /)
4 (0,0), z a, /---- b (rnod NOF), equivalence
being difined as follows: (w, y) and (cc’, y’) are
said to be equivalent if there is an element of
U(N) such that c’ sa: and /’-- stJ. It is

well-known that the function 8r as defined above
is a Hilbert modular form of weight r with re-

spect to /’ and that the Fourier coefficients of

df 8r are in Q() (el. [11]), where dF denotes
2/ri

duct of m copies of the upper half complex plane the discriminant of F and CN I N. Let/ be the
g)- {z C’Im(z) > 0}. For an element A order of the torsion subgroup of K and p the

(a b) (9) 9))c d SLz(OF) we put A()- a b complex conjugation. From now on we assume

c9) d(9) that / divides r. Then we define a Hecke
(9)or

as usual We letA act ong) byAz--
az+ b m c

cz + d" Let character q) by q)((c)) 9=1II ]o9]r for a non-

mf be a complex-valued function on Then we zero ideal (c) of K. Let IN be the ideal group of
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K prime to N and S {(c0 I:---1 whose determinant is congruent to d modulo
(mod NO)}. Let Z be a character of a ray class NOF. Then there exists a matrix A" SL2(O)
group IN/SN. From now on we assume that the with
class number of K is one and that 0/ has a base all a12
{co, 1} over O with Ira(cow)) > 0 for 1, al a= 0 d
2,..., m. We define as usual an L-function by f
L(s, X) X(a)(a)N(a) -s, where a runs

Let h- - be an element of o(Fv, Q(ev)) with

over all integral ideals of K prime to N. For an f’ g lYr(FN’ Q()) Then we can define an

element of O,, there exist uniquely two ele- automorphism A of o(Fv, Q(v)) by

Z1, Zm)ments u, va of O with c uco q-v by our hA(z1, "’’, z)-
f(A’ A’

assumption. Since the class number of K is one, g(A’<l)z
1, A"<m)z,)

we have the following (cf. [10], p. 500): 8r(zl,"’, z ;a, b ;N)
Lemma 1. Let notation and assumption be as Now, we describe the image of 8r(Zl,’", z;0,0;1)

above. We have by the above automorphism A for elements a, b
( Z c#- (2rri)mr of 0. For simplicity, we denote 8r(Zl,’’’, zL
2’ / (0" U(AD) 0,0; 1) by Gr. Then, since d;1/2Gr is in

] Z ((O!))gr (co(l) (m)
,’", co ua, va ;N), Q) and since d1/2gr(Zl Zrn" a, b" IV) is in(a)B

where B denotes the set of representatives of ideal Jr(Fn, Q(N)), we can see

classes modulo N.
Remark 1. Let be a unit in K. Then we

can easily see

8r (CO(l) (m)
,’’’, co Ua, Va )

8r (CO(l) (m).
," ", oo uas, vas N).

Let r(FN) be the vectors space over C of
Hilbert modular forms of weight r with respect to
Fn and r(FN, Q()) the vector space over

Q(N) of all f r(FN) whose Fourier coeffi-
cients at (i,.--, i) belong to Q(N). Furth-
ermore we denote by 0(Fw, Q(N)) the vector

Sr(Z1," Zrn(1)

$(z,. ., z, (a, b)A N)

(cf. [11 ]).
Let c be an element of 0,r and R(c) the reg-

ular representation of c with respect to {co, 1}.
We put
be an element of O. We suppose that c/9 is

prime to N and that det R(/) is congruent to an

element of Z modulo NOF. Then we have
R(B)8r(gl," grn

space over Q(N) of all meromorphic functions of (2) Gr
f gr(Z Zrn’laB VceB N)the form - with f, g ffJr(Fv, Q()) for any ,’"

Gr
non-negative integer f. An element of 30(FN, by 1
Q(N)) is a Hilbert modular function. Remark 2. If l(mod NOI), then we

Let d be a rational integer prime to N. Let o"e have
be the element of the Galois group Gal(Q(v)/Q)
given by = . Now, we define automorph- Gr
isms of O(FN, Q(N)) to be denoted later by A 8r(21," "’, Zm ;U, V; N)
as follows-(cf. [10], p. 502). Let f be an element G
of whose Fourier expansion m,, , at by (2). We note that the reflex field Q({=I c
(ico ioo) is c K}) of CM-type (K o") is the fieldi=12ritr(z)

f (Zl,’" ", z,,) 2 c() e

We define

f aa E C() aa gcitr(z)

Then it is well-known that f is in J(F,

K. Then we have the following Lemma which

plays an important role in the proof of our
theorem.

Lemma 2 (cf. [6] and [9]). Letf(zl,’’’, z,)
be an element of 3o(Fv, Q()) which is holomor-

Q(N)) (cf. [10], Prop. 4).
phic at (co(l) <m)

,"’, co ). We pUt SN { (a) IN"
Let A ( all a12) be a matrix in M.(OF) (IIm c() SN} Let KN" be the class field over K
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corresponding to S. Then we have f(w
(

(m))o9 K/v and

f(og(1) og(m)) /(=)__fn((-)...’-) (0.)(1) (m)
9"’9

for an eat (a) IN.
After these preparations, we can prove the

following theorem"
Theorem. Let K be a cyclic extension over

Q of degree 2m which is a CM-field with class
number one and tt the order of the torsion subgroup

of K . We put F= K R. We assume that O
has a base {09, 1} over

1,2,"" ", m. Let be an endomorphism of K
(-1) (-2) (-m)

defined by q)(cr) a a a for K Let
N be a positive rational integer, IN the ideal group
of K prime to N, SN- {(a) IN’Cr- 1 (mod
NO) } and S; ((a) IN" ((a)) SN}. We
assume that q) induces an automorphism of IN /S
(i.e. q)(IN)S;v- IN). For an element a of 0n, we

write a-- uao9 + va with ua, v 0F. Put
S; / SN { (G) SN, (s) SN) and

(1) (m)

O-
g(w ,..., w u, v,N)

i=l Gr
where Gr ," ", o9 ;0,0; 1). Let Kfv be
the class field over K corresponding to S;v. If I2 di-

vides r(>_ 3), then the set of conjugates of 0 over K
is a normal basis of Kfv over K.

Proof In order to prove our theorem, it is
sufficient to show X(v)O 4 0 for every

G(K/K)

character Z of G(Kfv/K)(el. [3]). We identify

G(Kfv/K) with Iu/Sv by Artin reciprocity law.
Let Z be a character of IN/S;v and {(ch)," ",

(at) } a representative of IN/Sv. Then we have

(27ci)-mr(o U(N)) Gr (, 0)__
E Z ((i)) r(o9(1) (m) -1

," ", dO tcr, Uai N) Gr
i=1 j=l

by Lemma 1. Using Remarks 1,2 and Lemma 2,
we have

(O)(1) (m)

i=l j=l

)
v, N) G-/1)

i=

we

runs over all characters of I/S, the set of con-

inmates of 0 over K is a basis of K over K.
Example. The assumption of our theorem

for
and N: 7.
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