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A Form of Classical Liouville Theorem
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The Liouville theorem in the theory of har-
monic functions (cf. e.g. Axler et al [1]) states
that any nonnegative harmonic function # on the
d-dimensional Euclidean space R®(d = 2)
reduces to a constant. It naturally occurs the
question how much the condition for # to be non-
negative can be relaxed (see, e.g. Doob [3]). Re-
cently Bourdon [2] proposed, among other related
things, the following interesting generalization of
the Liouville theorem :

Theorem A (Liouville Theorem).
harmonic function on R’ and satisfies

If u is a

(1) lim inf—u[%l)— 20,

|Z]—o0
then u is a constant function on R ‘.

Bourdon gave. an elementary and simple
proof to the abgve result by using only the mean
value property of harmonic functions originally
due to an ingenious idea of Nelson [6](cf. also [1]).
In contrast with the Liouville theorem in the
theory of complex functions it is natural to con-
sider Theorem A as a special case of the follow-
ing result:

Theorem B (Liouville Theorem).
harmonic function on R® and satisfies
2) lim inf -2

| 2] —oo |x|n+1
for some nonnegative integer n, then u is a harmo-
nic polynomial on R’ of degree at most n.
Clearly the #n = 0 case of Theorem B is no-
thing but Theorem A. The Bourdon proof of
Theorem A seems not to be straightforwardly ap-

If u is a

=20

*) Department of Mathematics, Nagoya Institute

of Technology.

* ) Department of Mathematics, Daido Institute of
Technology.

" Present address: Department of Mathematics,

Daido Institute of Technology.

1991 Mathematics Subject Classification. Primary
31BO05.

This work was partly supported by Grant-in-Aid
for Scientific Research, Nos. 08640194, 08640243,
Ministry of Education, Science, Sports and Culture,
Japan.

plied to that for Theorem B. It has been constant-
ly our claim (cf. e.g. [4]) that the Fourier expan-
sion method is one of the best tools to handle
harmonic functions as far as their domains of de-
finition are rotationally invariant such as R’
The purpose of this note is to give a proof to
Theorem B by using the Fourier expansion, and
actually, we prove Theorem B in the following
superficially more general form:

3. Theorem (Liouville Theorem). Suppose
that u is a harmonic function on R’ and that there
exists an increasing divergent sequence (7,,) 21 0f
positive numbers v,, such that
(4) lim inf ( min 2. ) 20

m—oo [zl=7p ,xl
for some nonnegative integer n, then # is a harmo-
nic polynomial on R’ of degree at most n.

Proof. We use the polar coordinate x = 7§
for points x € Rd, where » =|x| 2 0 and £ =
z/|lx] €S for x#0 and £=(1,0,...,0)
€ S for =0 for definitness. Here S*' is
the unit sphere {x € R®: |z| = 1}. We choose
and then fix an orthonormal basis {S,;:j =1,
..., N(k)} of the subspace of all spherical har-
monics of degree k of L*(S°™", do), where do is
the area element on S* . Then {S,;:j=1,...,
N(); k=0,1,...} is a complete orthonormal
system in L*(S°7", do). We have, as the special
case of the addition theorem,

n+1

N (k)

§a£f=ﬂﬂ

o, ’

where 0, is the surface area o (S*') of $*7%
Here N(0) = 1 and
Nk)=Q@Qk+d—-2)I'(k+d—2)T(k+1)I'd—1)
for k=1, 2,.... For simplicity we set A,: =
VN (k) /o, so that

1S, ®Ol=A4,(G=1,..., NK; k=0,1,...).
Then we have the following expansion of # (&)
in terms of spherical harmonics {S,;} :

oo

N (k) &
6 wo® =2 (T a8, ®)r"

k=0 ‘j=1

where a,; (j=1,...,N&k); k=0,1,...) are



No. 9]

constants. Here the series on the right hand side
of (5) converges uniformly in & € S*! for any
fixed 0 < 7 < oo,

The condition (4) assures that, for any posi-
tive number & > 0, there exists a number m,
such that

w2z —¢
for every m = m,. This means that

o N (k)
6 (2 aySy® )rit+eitzo0
k=0 j=1

for all £ € S* and for all m = m, Multiply 4,
£ S,,(6) 2 0 to both sides of (6) and then inte-
grate both sides of the resulting inequality over
S%' with respect to do. (Present authors have
been using this device frequently (see e.g. [4], [5],
etc.)). Then we obtain

0,A,(ay/ Vo, + erp™) £ ayrh 20,
or equivalently, we have
() A anry /o, +eri™™ ta,20
for every k = 1 and every m 2 m,. If k > n +
1, then on letting m T o in (7) we deduce * a;
20sothata,=0(=1,..., Nk ; k=2n+
2).1f k = n -+ 1, then again on letting m T © in
(7), we see that

0iAni1€ £ @piy; 2 0.

Here € may be any positive number and thus on
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making ¢ | 0O in the above, we conclude that =+
Apy;Z200ra,,;,=0(=1,...,Nn+ 1)).
Therefore (5) is reduced to

n N (k)
®  wrt) = 2 (2 a8, )"

k=0 j=1
Since S, (x) : = rkSkj (&) (x = r&) is a homo-
geneous harmonic polynomial in x of degree
k, (8) yields that u (x) = u (#£) is a harmonic
polynomial of degree at most #. O
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