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Introduction. The aim of the present paper
is to give an inequality between certain heights
of isogeneous polarized abelian varieties defined
over a number field (Theorem 0.1 below). As an
application we obtain a generalization (Theorem
0.3 below) of the theorem of Masser and David
concerning the number of rational points of small
height on a simple polarized abelian variety
(Theorem 0.5 below).

Let A be a g-dimensional abelian variety de-
fined over a number field k. Let / be a very am-
ple line bundle of degree d over A. Then (A,
M) determines a polarized abelian variety. By ex-
tending the base field if necessary, we have a
theta-structure on (A, M) (see [5, p. 297]). When
a theta-structure s is fixed, a basis (6,,)?_, for
the k-vector space I'(A, M) of global sections of
A is uniquely determined up to a constant (see
Section 1 below), hence determines an embedding
of A into the (d — 1)-dimensional projective
space P*™'. The naive height h, of the triple (4,
A, s) is defined by the absolute logarithmic Weil
height of the k-valued point (8,,(0))_, in P*™".

Throughout this paper, k denotes a number
field of finite degree 4 = [k: Q].

The fundamental result of this paper is the
following. (The superscript below indicates the
inverse image of a line bundle by a morphism [8,
p. 110].)

Theorem 0.1. Let A and B be g-dimensional
abelian varieties over k, f be an isogeny of A onto
B, and M and N be very ample line bundles over A
and B, vespectively, such that M = f*N. For a
theta-structure t on (B, N') which is compatible
with a theta-structure s on (A, M), we have

ho(A, M, s) = h (B, N,D.
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The exact meaning of the compatibility of
theta-structures is defined in Section 1.

Remark 0.2. For the Faltings stable height
hg, we know 1

hy(A) = h,(B) — —z—log deg f cf [2, Lemma 5.
O

Two theorems below are main applications
of Theorem 0.1. We denote by g, the quadratic
part of a Néron-Tate height on A. We define the
naive height h, of the pair (A, () by the mini-
mum of h, (A, M, s). We know that the number
of theta-structures is finite (see [5, p. 297]). The
rotation ®* means the tensor product of 4 copies
of a line bundle [8, p. 153].

Theorem 0.3. Let £ be an arbitrary ample
line bundle over A and set M: = (£ Q (— 1)*
P)Y®* Assume that A is simple and a theta- struc-
ture on (A, M) is defined over k. There exists a
positive constant C = C(g) such that for any finite
extension field F of k of degree D= [F : k] we
have 1

#{Pe AP |q, (%, P) < A0

< Cdeg @ hy(A, M) AP
(1 +10og 4)’D°(1 + logD)°.
Theorem 0.4. Under the same assumptions as
those of Theorem 0.3 we have a positive constant C
= C(g) such that
min
A(F)> P:non—torsion

q.(%, P)

C
> .
h (A, M)¥ A¥ (1 + log 4)*D* (1 +logD)”

The proof of these theorems is based on the
next theorem 0.5 due to Masser [3] and David [1],
which is a special case of Theorem 0.3. It seems
difficult to us to generalize directly the method of
[1] to prove them, but as we shall show below,
they follow easily from our theorem 0.1.

Theorem 0.5 (Masser-David). Let B be a
g-dimensional simple abelian variety over a number
field k and N be an ample line bundle over B of de-
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gree 8° of type (8,:+-,8). Suppose that a theta- struc-
ture on (B, N') is defined over the base field k.
Then there is a positive constant C = C (g) such
that 1

#{Q € B(F) | q;W, Q) < m}

<C-hy (B, M¥?*4%*Q +1og 4)’D’(Q + logD)’.

As for elliptic curves, see [4], too.

1. Naive height of a polarized abelian varie-
ty. Let k be a number field and A be a g-dimen-
sional abelian variety over k. We denote by /[ a
very ample line bundle over A of type 0 [5, p.
294], where 0 is a finite sequence (d,, . . .,
d,) of positive rational integers d; such that d,,,
divides d;. Let ¥ () be the theta group associ-
ated with M [5, p. 289]. It is a group scheme
over k [7, p. 225] which acts on J{. We assume
that a primitive d,-th root of unity is already in k
and the group 9 (M) (k) of k-rational points of
G (M) is isomorphic to the group 9(8) (k) below, in
which case we say a theta-structure is defined
over k.

Let K(8) (k) : = ®°_, d;'Z/Z and K(5) (k) :
= Hom (K (6)(k), G,, (k)). As set, the group
9(0) (k) equals G,,(k) x K(0) (k) x K(©) (k). It
acts naturally on a finite dimensional k-vector
space V(8) (k) : = Map (K(9) (k), A’ (k)), which
induces a multiplication law on ¥ (d) (k) [5, pp.
294-297]. We see that the abelian groups
K(8) (k) and K(J) (k) are subgroups of 9(8) (k).
An isomorphism s: 9(M) (k) =% () (k) is called
a theta-structure [5, p. 297]. Via s, the group ¥
(0) (k) acts also on the k-vector space I' (A4,
M) of global sections of .

Proposition 1.1. Ownce a theta-structure s is
fixed, the k-vector space I'(A, M) is isomorphic to
the k-vector space V(6) (k) as 9 () (k) -modules.
The isomorphism is unique up to multiplication by a
constant in k.

Proof. [5, pp. 295-297]. U]

Let @, be an element of V(d) (k) defined as

o1 ifr=y
%@ : = { 0 otherwise.
The set (Q,)exwy fOrms a basis of the k-vec-
tor space V(0) (k). Let (6,,)zexi a be a subset
of I'(4, M) that consists of the elements which
correspond to @, under an isomorphism in Prop-
osition 1.1.

Definition 1.2. The naive height h, of (A,

M, s) is the absolute logarithmic Weil height of
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the k-valued point (6, ,(0)) ek in the projec-
tive space P°' where d is the dimension of
I'(A, M) which is equal to deg .

By Proposition 1.1, the real number A, (A,
M, s) is well-defined.

Remark 1.3. At Archimedean places the
values 6, (0) are the classical Thetanullwerte
0,,,(T, 0). [l

Let H be any subgroup of 4 (/) (k) such
that s (H) < K (8) (k) € 9(8) (k) for a fixed
theta-structure s. We divide A and 4 by H: in-
deed, there exist an isogeny f of A onto an abe-
lian variety B over k and an ample line bundle
N over B such that deg f= # H, f*N = M, and
the k-vector space I' (B, N) is identified with
the H-invariant subspace of I"(4, ) under f*
[5, pp. 290-291].

Let 9 (M) (k)* be the normalizer of H in
GM)(k) and L: = K@) (k) Ns @ M) (k)*).
The group 9 (M) (k)* acts naturally on

I'(B, N) = I'(A, A)".
In fact, we have [5, p. 291]
GM) (k)*/H = 9(N) (k).
On the other hand, we see
s@U) (k) */H) = G,,(k) x K@) (k)/s(H) X L
and we have
K () (k)/s(H) = Hom (L, G,,(k))
by definition. This leads to the existence of a
theta-structure £ on (B, N).

Definition 1.4. The theta-structures s on
(A, M) and t on (B, N) are compatible if B and
N are the quotients of A and of /{, respectively,
by a subgroup of s~ (K () (k)) and if ¢ is in-
duced by s taking the subquotients.

Proof of Theorem 0.1. Let (6,,),cxs @ and
(0,,),e. be sets of global sections of M and N,
respectively, as described before. Note that L is a
subgroup of K(d) (k). By using Theorem 4 of [5,
p. 302], there is a constant A € k such that (1 -
0,,) e is a subset of (0,,) cxy via f*: I'(B,
N) < I (A, M). The definition of the Weil
height yields the proof. U]

2. Proofs of Theorem 0.3 and Theorem 0.4.

Proof of Theorem 0.3. Fix a theta-structure
s of 9(M) (k) satisfying

h(A, M, s) = h,(A, M).
As indicated in the previous section, we have an
isogeny f : A— B, an ample line bundle N over
B of type (8, -+, 8), and a theta-structure f of
9 (N) (k) which is compatible with s such that
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deg f=deg ¥ and XN = M.
As a line bundle of type (8, -+, 8) is automatical-
ly very ample [6, pp. 83-84], the naive height is
defined. A property of the Néron-Tate heights
shows
Q. (M, P) = q,(f*N, P) = qz(N, f(P))
for P € A(F).

Thus we have

#{P < AP | g, P) < CAD}
<degf #1Q€ BB |g,N, @ < ap)
=deg £ #1Q € B | g;W, Q < 5p)-

By virtue of the Masser-David theorem, we
obtain
#{Pe AP |q,l, P) <

<deg¥-C-h,(B, ¥*A

<aD
%2(1 + log 4)°
D°(1 + logD)’
<deg?-C-h, (B, N, H¥*2%"?
(1 +log 4)’D°(1 + logD)’.
Together with the additive law of Néron-Tate
heights, we get
g,(M, P) = ¢,((£ @ (—1)*O)®*, P)
=4-q,(¢, P) + 4-¢q,((—1)*%, P)
=4-q,(¢,P) +4-q,(¢, —P)
= 8-q,(%, P).
Theorem 0.1 gives the desired inequality. ]
Proof of Theorem 0.4. Notation being as
above, for P € A(F) we have

L(L, P) = 5 4, V, (P)).

By Theorem 0.1, it suffices to prove the theorem
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for (B, N'). The conclusion is immediate by an
easy argument using the theorem of Masser and
David. U
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