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Fix an algebraically closed field k of charac-
teristic p 4= 2,3. Let f:X---, C be a non-trivial

Jacobian elliptic fibration defined over k with a
base, a smooth projective curve C. In our consid-
eration we always assume that f is relatively
minimal and "Jacobian" means that f has a global
section. Recall Shioda’s formula as a special case
of the Ogg-Shafarevich formula (cf. [6]).
(1) r+p2= 4g(C) 4+2s-- Sl
where P2 denotes the so-called Lefschetz number
(the difference between the 2-nd Betti number b2
and the Picard number p), r is the Mordell-Weil
rank, s the number of singular fibres and s de-
notes the number of semi-stable singular fibres

(i.e. of type I in the Kodaira-N6ron classifica-

tion).
Since P2 -> 0 (Igusa’s inequality), so if C -p1 then from (1) it is clear that s--> 2. On the

other hand a non-trivial elliptic fibration over
any base must have at least one singular fibres,
because the moduli space of elliptic curves de-
fined over k is Ak. It is known also that the case
s--1 over an elliptic base is in fact realized.
Note one more fact: if C p1 and f is non-

isotrivial then s --> 3. This fact should be thought
in a different context and in a more general
situation (cf. [3]). From the classification below
one obtains another proof of this fact: in other
words, one sees that elliptic fibrations over p1
with s 2 are isotrivial.

Theorem 1. In the situation above assume
that K-S(f) 4= O. Then we have:

A. In the case C - p1 and s <_ 3: X is a

rational or K3 surface. Furthermore one has the
following complete list (for completeness isotri-
vial fibrations are also included).

1. Rational surfaces (s 2, r 0):
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222 (H * II X(HI* III)
X44(IV* IV), X11(j)(I:, Io*) with j k.

2. Rational surfaces (s 3)
1) (r- 0)" X141(I*, 14, I1), X22(I*, 12, I),

2431(IV*,I3, 11), 2411(14., 11, 11),
Xa21 (III* 12, 11) X211 (II* 11 11)

2) (r- 1)" X:21(I?, III, I1),,2:21(11, III, 12), 22111(I1",IV, 11),
X3141 (III* H 11) X41 (IV* III 11)
2:3l(Ia*, el, I1), X:31 (I*, Ia, el),

H).
3) (r 2) &44 (IV, IV, IV),
Xa (Io* lie, Ill), X:41 (11", Ill, el),

ii, U), (Io*, IV, II),
XI44(IV * II II)

3. K3 surfaces(s 3)
X411(14*, 11", 11"), X*(I*, I*, I*),
X*l(Ia*, IV* el*) Xa21(III I* 11")
X2 (el*, I*, I*), Xll (0)(II IV*, Io*),
Xa* (III*, lie*, Io*), xa*. (Ill*, IV*, el*),
X4*44(11*, el*, IV), X442.(IV* IV* I*)

(iv*, iv* iv*)
Moreover these surfaces are unique.

B. In the case C- E, an elliptic curve, and
s 1, the fibration f:X ---) E has a unique con-

figuration (I*).
In characteristic zero, formula (1) is suffi-

cient to conclude: pg(X) <_ 1. In the general case
it requires involving the so-called function field

analog of Szpiro’s conjecture which we formulate
below.

Theorem ([1, Theorem 3]). Letf :X--, C be
a non-isotrivial family of elliptic curves (i.e. j-
invariant is non-constant) with conductor of de-
gree m. Then

(2) deg(A) _< 6p(2g(C) 2 + m)
where A is the discriminant divisor on C and
e is the inseparability exponent of the induced
j-map" C -- p1.

First of all we remark that isotrivial case
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can be easily treated. Next in view of the well- Then X is pull-back of a surface described in

known theory of Ogg-Shafarevich the condition p Theorem 1 via a base change of some power of
:/: 2,3 implies that we are dealing with the the absolute Frobenius morphism.
"tamely" ramified case. So that m <_ 2s. Hence in First note that one can take a base change,
case A: pg(X) <_ 1, and pg(X) 1 in case B. It say of degree 12, after which our fibration be-
remains to classify case A. In the rational sub- comes semi-stable. Obviously this semi-stable re-

case, the theory of Mordell-Weil lattices ([7]) is duction base change does not affect to the in-

applied. Subcase of K3 surfaces is reduced to the separability degree of f Furthermore the proof in

above because of the following argument. In this the semi-stable case is similar to that in [4].
case m 6, so that s 0, i.e. all singular fibres Thus one obtains a class of unirational sur-
are non-semi-stable. Next since ca(X) 24 and faces from the classification above. Also note that
from the Kodaira-Neron classification it can be in this classification the action of the absolute
shown that there exist at least two singular Frobenius reduces isotrivial fibrations to isotri-
fibres with upper star (in the Kodaira notation), vial ones. In particular fibrations over p1 with
So producing inverse twist transforms at the cot- s 2 are rational.
responding critical points one obtains rational Remark. The following interesting case
surfaces with 3 singular fibres, over P1 with s 4 can be also treated by means

It is not difficult to write down normal of methods exposed here. We do hope to come
Weierstrass forms for the surfaces above and back to this situation in a future publication.
one can see that they are in fact unique. Acknowledgements. would like to thank
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