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1. Introduction. Consider the confluent

hypergeometric function
, _ ®),,(B),
1) 0,8,8,7r, 2,9 = ngZO @ D), D), x y

convergent for |x| < o ,|y| < o, in which
B, =TI+ m)/I'B) (cf. [3]). This function
satisfies a system of partial differential equations
(2)  xzyy tyz, + (r —2)2, —Bz2=0,
vz, t xz,, + (r —yz,— PBz=

which possesses the singular loci x =0, y = 0,
x — y = 0 of regular type and £ = ©©, y = o0 of
irregular type. The solutions of system (2) consti-
tute a three-dimensional vector space over C. In
what follows, we assume that none of the com-

plex numbers B, 8, r—B—B,8—7,B — 7.

and B+ B’ is an integer, and use the notation
Q@ .
e’ = exp(2mid).

It is known by Erdélyi [1,2] that, near the
singular loci of irregular type, system (2) admits

convergent solutions as follows:
uy= 0,8, 8,1, 2,9 (x|<oo, |y| <o),

v, ="y o B+ —1r+1, 5,
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where
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are convergent for | x| < 1, | y| < . Hence we
have triplets of linearly independent solutions
(4, v;, wy) (in the domain |z | < |y|or |z| <
|z —yl), (uy, v, w,) (in the domain |y| <|z|)
and (u,, v5, wy) (in the domain |z — y| < |z ).

On the other hand, in [4,5], we chose linearly
independent solutions expressed as

@ z=0-eD7"[ f@,y dar,
C(x)
4) z,=Q0Q— e"‘“”)“f f(z, y, Hat,
C(0)
_ B\
5) z.=@1— e fcmf(‘r’ y, Dat,
with

©®) f@,y, ) =Tt - -y
and examined the asymptotic behaviour of them
near the singular loci £ = 0, y = © of irregu-
lar type. Here the paths of integration and the
branch of the integrand are taken in such a way
that, in the case where
(7) O0<argr<rm<argy <2rm,

< arg(y — x) < 2r,
they have the following properties:

(i) Cl@ (@a=0,xz,y) is a loop which
starts from = — o encircles { = a in
the positive sense, and ends at £ = — o0,

(i) C(x) lies over C(0), and C(y) lies
under C(0) in the ¢-plane.
(iii) The branch of f(x, y, !) is taken such

that argt=arg(t —x) = arg(t — )
= 7 at the end point £ = — ©© of each
path of integration.

In this paper, we calculate connection
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formulae for these solutions. Combining our re-
sult with [4,5], we can see the global behaviour
of them in P'(C) X P(C).

2. Result. Let z=z(x, y) be a column
vector function defined by t(z+, Z,, 2_). Then we
have the following result.

Theorem. We have u, = a,z, v; = b;z, w,
= ¢;z (j = 1,2,3), where a,, b,, ¢; are row vectors
listed below:
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3. Proof of Theorem. For example, we
verify the relation w; = ¢,2. The others are
shown by similar arguments. By the theorem of
identity, it is sufficient to show the relation for
(x, y) satisfying (7) and |y|>|z|. By [4;

Corollary 2.3, (2) and §5.5], we have
z(x, ye’™) = M,Myz(x, y) in the domain |y]| >
| z|, where
8) MM, =
o8 0 1 — &
0 o5 1 — 8
e(B"T) _ e(—r) e(—ﬁ') _ e(B—T) 1 _ e(—ﬂ') + e(—T-)
Since w, = w,(x, y) satisfies w, (z, ye*™) =

e w,(x, y), it follows that ¢,M,M,= ¢ ¢,

Hence ¢, is written in the form

9) ¢ = k(e® — 1, 78 — e(B), 1— e(r—B’)),
for some complex constant k£. To calculate &, we
may assume that Re 8 < 0,Re 8 <0, Re(B +
B’ — 1) > 0. Substituting (3), (4), (5) and (9) into
w, = ¢,2, and putting x = 0, we have

(10) %771 + 0

7 v r_ -
=K@ =D [ G-
0

near y = 0, where the path of integration is a
segment from # = 0 to { = y, and the branch of
the integrand is taken such that argt! = argy,
arg(t—y) =argy — n (r < argy < 27) along
it. If we put £ = ys in (10), then args =0, ¢t — y
=¢ "y(1 —s), where arg(l—s) =0 for
0 < s < 1. Hence (10) is written in the form

. , 1 ’_ —_pr
k" " —1) f $$T7A—9)Fe"ds=1+ 0(y),
0

from which we derive

_ Gy = BHI2 — )
- 2nil1 — B) )

Thus we have obtained the desired relation.
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