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1. Introduction. In the previous paper [1],
we investigated Euler’s discretization of the sca-
lar autonomous ordinary differential equation
which has only one stable equilibrium point.
Under some conditions, it is shown that Euler’s
finite difference scheme Fat is chaotic for a suffi-
ciently large fixed time step At.

On the contrary, in this paper, for a suffi-
ciently small fixed time step At, we will find the
necessary and sufficient conditions under which

Fat is stable in the neighborhood of the equilib-
rium point, and the sufficient conditions under
which Fat is chaotic around the equilibrium
point.

2. Definitions and assumptions. For the
scalar autonomous O.D.E.

du
(1) dt f(u) u R1,
we put following assumptions"

f(u) is continuous in R
f(u) >o (u < O)
f (0) 0
f(u) < 0 (0 < u).

In other words, u--0 is the only stable equilib-
rium point. Euler’s discretization scheme for (1)
is as follows: with the fixed time step At,

Xn+ Xn
At f(x.),

x.+i x + At.f(x.).
Now, finite difference scheme Fat(X) is defined as

(2) Fat(x) x + At’f(x), (i.e. Xn+ Fat(Xn))
and we will investigate this dynamical system

F,(x).
3. Condition for stable behavior of Fat.

Generally speaking, Euler’s finite difference
scheme with sufficiently small At gives a good
approximation for the solution of differential
equation. For example, consider a differential
equation
du

au(1 u) (u > O, a is a positive constant).
dt
The orbits of the corresponding dynamical

system (2) converge to a stable equilibrium point
u-- 1 with any At less than 2/a. But the next
example shows that however small At is chosen,
the orbits don’t always converge to the equilib-
rium point:

du f v/- u (u < O)
dt [- v (u > 0).

In this case, Fat(x)is super-unstable at x 0
(F[t(O) oo), and it has a super-stable orbit
(___ At"/4) with period 2.

Theorem l(Lipschitz case). Assume that (1)
holds the following additional condition:

(3) If(u) < M0 (vu < 0)

(M0 is a positive constant).
Then, there exists AT > 0, such that for any
At(O < At < AT), Fat has no periodic orbit ex-
cept the equilibrium point x 0. And for any in-

itial point xo, FXt(xo) converges to the equilib-
rium point.

Proof of Theorem 1. Define subsets D_, D+,
DO andD’ of R by

D_ {(x,y) lx<y<0},
D+ {(x,y) 10< y<x}
Do-- {(x, y) 10 < x, y 0},
D’= {(x, y) y < 0 <x}.

Set AT 1/Mo. From the condition (3), for any
At(O < VAt< AT) and anyx< 0,

Fat(x) x + At’f(x) < x + AT’f(x) < x
+ AT’(- Mox) x(1 MOAT) O.
On the other hand, Fat(x) x + At’f(x)

x, so x < Fa,(x) < 0.
Hence, x < 0 implies (x, Fat(x)) D_ for any
At(O < VAt < AT).

Let x. F2(Xo) (n > 0) be an orbit of
There are 4 cases of behavior of x. as follows:
Case (a) x0 < 0. Then (x., X.+l) D_ for any
n > 0. Therefore the sequence x. increases
monotonously towards the equilibrium point.
Case (b) Xo>0, and (x.,x.+) D+ for any
n >_ 0. Then the sequence x. decreases monoto-
nously towards the equilibrium point.
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Case (c) There exists N_> 0 such that (xN, sup--x
XN+I) Do. Then XN+I’-XN+2--"’" =0, SO x,o f(X) (O<AT<--+co). For any At(O<

xn also converges to the equilibrium point. V At < AT), there exists xo 4= 0 such that At
Case (d) There exists N-> 0 such that (xN, --Xo/f(Xo). Without loss of generality, x0 < 0.
XN+I) D’. From the fact XN+I < 0, this case Then FAt(xo) xo+ At" f(xo) 0, and F2t(xo)
is reduced to Case (a). 0 > xo. Hence Xo < FA’t(Xo).
Consequently, xn converges to the equilibrium On the other hand, if we show the existence
point in any case. Q.E.D. of xl(Xo < =lx < 0) such that F,t(x) < x,

In the above discussion, if we want to show there exists an orbit with period 2 by the in-
the stability of FAt only in the neighborhood of termediate value theorem. The proof is the fol-
the equilibrium point, the condition (3) can be lowing.
eased to If(u) Mo (3 K < u < 0). At first we can show the existence of K
But this condition is not available for u R1. < 0 (x0 < K)such that
Consider F(x) > x (K1 < Vx < 0).

du I u2 (u < 0) In fact, FAt(x) -+- x-- 2x + At f(x) x{2 +
dt [_ u (u >-0). At" f(x)/x} is positive for sufficiently small

In this case, for any At, negative x because x 0 and f(x)/x--* co

F:t ++__ + At’ In the same way, as lim,,_+of(U)/U co,
that is to say, there exists a periodic orbit with there exists K > 0 such that
period 2. FAt(x) < x (0 < V x < K).

From the point symmetry at the origin, the Now that limz__0FAt(x) 0, there exists x(K
condition (3) can be changed to boundedness of < 3Xl < 0) such that FAt(Xl) < K. Then
f(u)/u[ in the right neighborhood of the FAt(Xl) > x(> 0) because KI<X < 0, and

equilibrium point. Therefore if neither right nor besides FAt(FAt(xl)) < FAt(x) for 0 < FAt(x)
left limit of f(u)/u is co, FAnt(X) converges to < K..
the equilibrium point in its neighborhood with a In this way, it follows Fat(x) < --FAt(X) < Xl,
sufficiently small At. On the other hand, if either and we can show the existence of x(> x) such
right and left limit of f(u)/u is --co, the that et(x)< x. Q.E.D.
equilibrium point is super-unstable (Ft(O) Theorem 2 assures the existence of the
co) with any At. periodic orbit with period 2 for a sufficiently

Corollary 1. (i) F*t (x) converges to the small At. Moreover if there is a periodic orbit

equilibrium point in its neighborhood with a with period 3, FAt is chaotic in the sense of
sufficiently small At. Li-Yorke [2]. In this case, Yamaguti-Maeda

=> lim
f(u) < + co or lim

f(u) < + co. already proposed an example [3]. Now we show

u--o --u u-.+o u another example which the order of infinitesimal
(ii) FAnt(x) never converges to the equilibrium of f(u) is different between u--* 0 and u +
point with any At.

f(u)=> lirn co.
u-O

4. Phenomena around the super-unstable
equilibrium point. If the limit of f(u)/u is co,
the equilibrium point of FAt is super-unstable.
Moreover, this condition implies the following.

Theorem 2. If lira f (u)
co

u--.O /

then, there exists A T > O, such that FAt(x) has a

O.
Theorem 3. Suppose that 0 < c < 1 and

the following conditions:
(i) f (u) 0((-- u) a) (u-- O)

(ii) lim f(u)
co.

u--,+0 U
a

Then there exists AT > 0 such that FAt(x)is
chaotic in the sense of Li-Yorke for any
At(O < VAt < AT).

Proof of Theorem 3. To prove chaos in the
periodic orbit with period 2 for any At(0 < sense of Li-Yorke, it is enough to show the exist-
V At < AT). ence of a, b FAt(a), c FAt(b) and d

Proof of Theorem 2. Let us set AT= FAt(c) which satisfy d_< a < b < c. From (i),
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there exists K > 0, L1 > L2 > 0 such that
L.(-- x) <_ f (x) < Ll(-- x) (-- K < Vx < O).
Let b- (L.cr" At)-f (b < 0). Before discus-
sing about a, let us prepare 2 numbers, say N
and AI:

N is an ulnique positive solution of N-
L1Na A- (L2o) l-a,
(4) A1 is a positive constant such that N" Atl-
< K (0< VAt<A1).
In the following discussion, assume that 0 < At
<A1.

Lemma (a). There exists a (-- N At-f=-
< a < b) which satisfies Ft(a) b for any At
(0< VAt<A1).

Proof of Lemma (a). This can be proved by
the intermediate value theorem.

F,(- N" Atr-)

N’At-f=- + At’f(-- N’At-f=-)
< N. At-f=- + At.L (N" At-f=-) (by (4))

(L:N N)’At-(La)-f:-’Af;=- b.

(5) Hence, Ft (-- N" At-;:-x) < b.
On the other hand, Fat(b) b + At.f(b) > b, so

(6) F,(b) > b.
From (5), (6) and the continuity of Ft(x), (in-
termediate value theorem)

N’A t-f:- < a < b s.t. F,t(a) b.
Q.E.D. of Lemma (a)

This is why a exists. Note that

K < N.A t-f:- <_ a < b < O.
Next, let us estimate c(c--Ft(b)= b + At"
f(b)). From K < b < 0,

b-4- At’L(-- b) <- c <- b + At’L1(- b)

(L.a.At) -v:- + At.L(Lcr.At) -v=- < c

<_ (L.a.At)r=- + At.LI (L.a.At) 1-
oz

A t-:--L1- (ar= al-’) <- c
o

< {Ll(L2a)-f:-----_ (L2a)-f:---}.Atl-
t

c is positive because of cr1- crI- > 0. The
following constants C1, C2 are independent of At.

t

o

C2 Li-a (l-a
Finally, from d- Ft(c) c + At. f(c), let us
showa--d> 0.

(7) a- d > N’Ati-a c- At.f (c)

> N.At-f:-- CI’At-f:-d At.f(c)

Atl -. { (N + Cl)
f(c)}

At l---t-- (N + C1) + a j

A tr:-x c

_> {- + + (
c
o

Since c--* + O(At -- + 0), (7)is positive for a

sufficiently small At, thus,
SAT> Os.t. d_< a (0 < vat< AT) Q.E.D.

An example of Theorem 3 is the following:

(-u) (u<O)
f(u)

-u (u>0) (0 </3 < cr < 1).
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