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1. Introduction. In the previous paper [1],
we investigated Euler’s discretization of the sca-
lar autonomous ordinary differential equation
which has only one stable equilibrium point.
Under some conditions, it is shown that Euler’s
finite difference scheme F,, is chaotic for a suffi-
ciently large fixed time step 4%

On the contrary, in this paper, for a suffi-
ciently small fixed time step A4¢, we will find the
necessary and sufficient conditions under which
F,, is stable in the neighborhood of the equilib-
rium point, and the sufficient conditions under
which F,, is chaotic around the equilibrium
point.

2. Definitions and assumptions.
scalar autonomous O.D.E.

M % — ) ue R,

For the

we put following assumptions:

f(w) is continuous in R’

fw) >0 (u<0)

f0) =0

flw) <0 (0<w.
In other words, # = O is the only stable equilib-
rium point. Euler’s discretization scheme for (1)
is as follows: with the fixed time step A4f,

xn+lAt xn — f(xn),

X, =x,+ At-f(x,).
Now, finite difference scheme F,,(x) is defined as
(2) F,(x) =x+ At f(@), (e x,,, = F,(z,))
and we will investigate this dynamical system

F,,(2).
3. Condition for stable behavior of F,,.
Generally speaking, Euler’'s finite difference

scheme with sufficiently small At gives a good
approximation for the solution of differential
equation. For example, consider a differential
equation

du
G au(l — u) (u =0, a is a positive constant).

The orbits of the corresponding dynamical

system (2) converge to a stable equilibrium point
u = 1 with any At less than 2/a. But the next
example shows that however small At is chosen,
the orbits don’t always converge to the equilib-
rium point:
du _ {\/—u (u < 0)
dt —Vu (u=0).
In this case, F,(x) is super-unstable at £ = 0
(F;,(0) = — ), and it has a super-stable orbit
(+ At?/4) with period 2.

Theorem 1(Lipschitz case). Assume that (1)
holds the following additional condition:

3) l—f_(i; <M, (Vu<0)

(M, is a positive constant).
Then, there exists 47T > 0, such that for any
At(0 < At < AT), F,, has no periodic orbit ex-
cept the equilibrium point x = 0. And for any in-
itial point x,, FAn,(xo) converges to the equilib-
rium point.

Proof of Theorem 1.
D, andD’ of R® by

D_={(,p|x<y<o0},
D,={x,p|0<y<uz
D,={(x,y)|0<zx,y=0},
D ={(x,yly<0<ua.
Set AT = 1/M,. From the condition (3), for any
At(0 < VAt < AT) and any £ < 0,
F,(x) =x+ At f(x) <z + AT f(x) <z

+ AT (— M) = x(1 — M,AT) = 0.

On the other hand, F,,(x) = x + At-f(x) >
z,sox < F,,(x) <O0.

Hence, x < 0 implies (z, F,,(x)) € D_ for any
A0 < VAt < AD).

Let x, = Fy,(x,) (n = 0) be an orbit of F,,.
There are 4 cases of behavior of x, as follows:
Case (a) x, < 0. Then (z,, ,,,) € D_ for any
n =2 0. Therefore the sequence X, increases
monotonously towards the equilibrium point.
Case (b) x,> 0, and (z,, 2,,;) € D, for any
n = 0. Then the sequence x, decreases monoto-
nously towards the equilibrium point.

Define subsets D_, D,,
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Case (¢) There exists N = 0 such that (x,
Zyi) € Dy, Then Xy =y, = '+ =0, so
Z, also converges to the equilibrium point.
Case (d) There exists N = 0 such that (zy,
Zy.) € D’. From the fact xy,; < 0, this case
is reduced to Case (a).
Consequently, x, converges to the equilibrium
point in any case. Q.E.D.
In the above discussion, if we want to show
the stability of F,, only in the neighborhood of
the equilibrium point, the condition (3) can be

eased to |f)/(—wuw)| <M, (3IK<u<0).
But this condition is not available for # € R".
Consider

du _ {uz (u < 0)

dt — 4’ (u=20).

In this case, for any 4¢,

2 2 2
Fi (£ 21) = = 47
that is to say, there exists a periodic orbit with
period 2.

From the point symmetry at the origin, the
condition (3) can be changed to boundedness of
| f(w)/u| in the right neighborhood of the
equilibrium point. Therefore if neither right nor
left limit of f(u)/u is — o, F,.(x) converges to
the equilibrium point in its neighborhood with a
sufficiently small 4¢ On the other hand, if either
right and left limit of f(u)/u is — o | the
equilibrium point is super-unstable (F;,(0) = —
©) with any At.

Corollary 1. (i) F,,(x) converges to the
equilibrium point in its neighborhood with a
sufficiently small A4t.

< lm ",

— — f(w)

< + o or lim L
u—+0 u

(ii) Fs(x) never converges to the equilibrium

point with any At

< + oo,

f) _

< lim

u—0

4. Phenomena around the super-unstable

equilibrium point. If the limit of f()/u is — ©,

the equilibrium point of F,, is super-unstable.
Moreover, this condition implies the following.

i
then, there exists AT > 0, such that F,,(z) has a
periodic orbit with period 2 for any A4t(0 <
VAt < ATD).

Proof of Theorem 2.

Theorem 2.

’

Let us set AT =

[Vol. 72(A),

supf-—_(% (0<AT< + ). For any At(0<

Z#0

V At < AT), there exists x, # 0 such that At =
— x,/f(x,). Without loss of generality, x, < 0.
Then F,,(xz) = x, + At- f(x,) = 0, and F/,(z,)
=0 > x, Hence x, < F}(z,).

On the other hand, if we show the existence
of x,(x,< 3x, <0) such that F.(x) <z,
there exists an orbit with period 2 by the in-
termediate value theorem. The proof is the fol-
lowing.

At first we can show the existence of K,
< 0 (z, < K,) such that

F,(x) > —x (K, < Vx <0).
In fact, F,,(x) +x=2x + At - f(x) = x2{2 +
At - f(x)/x} is positive for sufficiently small
negative x because £ < 0 and f(x)/x— — o©
(x— — 0).

In the same way, as lim,__ ., f(#)/u = — o,

there exists K, > 0 such that

Fu () < —x 0< V< K,).

Now that lim,__oF,(x) = 0, there exists x,(K,
< 3z, <0) such that Fy(xr) <K, Then
F,(x) > — x2,(> 0) because K, <z, <0, and
besides F,,(Fy,(x)) < — F,,(z;) for 0 < F,,(x,)
< K,

In this way, it follows F2(x,) < — F,,(z) < x,
and we can show the existence of x,(> x,) such
that F7,(z) < z,. QED.

Theorem 2 assures the existence of the
periodic orbit with period 2 for a sufficiently
small Af. Moreover if there is a periodic orbit
with period 3, F,, is chaotic in the sense of
Li-Yorke [2]. In this case, Yamaguti-Maeda
already proposed an example [3]. Now we show
another example which the order of infinitesimal
of f(u) is different between #— — 0 and ¥ — +
0.

Theorem 3. Suppose that 0 < a <1 and
the following conditions:

(i) f(w) = O((— W) (u— — 0)

Then there exists AT > 0 such that F,,(x) is
chaotic in the sense of Li-Yorke for any
At(0 < VALt < ATD).

Proof of Theorem 3. To prove chaos in the
sense of Li-Yorke, it is enough to show the exist-
ence of a,b=F,(a),c=Fu,®b) and d=
F,,(¢c) which satisfy d < a < b <c¢ From (i),



No. 2]

there exists K > 0, L, > L, > 0 such that
L(—D*<f(@) <L (—0* (—K< Vx<0).
Let b= — (L,a- AHT-= (b < 0). Before discus-
sing about a, let us prepare 2 numbers, say N
and 4;:

N is an upique positive solution of N =
LN®+ (L,a)T=,
(4) 4, is a posmve constant such that N-A4f-« 7
<K (0< VAt<A).
In the following discussion, assume that 0 < At
< 4,. .

Lemma (a). There exists a (— N - Afi-«
< a < b) which satisfies F,,(@) = b for any At
O< vAat< A).

Proof of Lemma (a). This can be proved by
the intermediate value theorem.

F,,(— N-AfFo)
1 1
= — N-AfF=a + At-f(— N-Afi-2)
1 1
— N-Af=@ + At-L,(N-Afi=9)% (by (4))
1
= (L,N* — N)-Af-a
1 1
[ J— (Lza)m.dtm = b_
1
(5) Hence, Fy(— N-Af1-2) < b
On the other hand, F,,(b) = b+ At-f(b) > b, so
(6) F,(b) > b.
From (5), (6) and the continuity of F,(x), (in-
termediate value theorem)
1
— N-Afi~e < F3g<bst F,(@ =b
Q.E.D. of Lemma (a)
This is why a exists. Note that
1
— K< —N-AfT-a < a < b <0.
Next, let us estimate c¢(c = F,,(b) = b + At
(). From — K< b <0,
b+ At L,(— b < c< b+ At-L,(— b”

IA
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— (L ADT% + At-L(La- ADT# < ¢
< — (L AT + At-L,(La- A)TE
LTe (ar — gi°a) - A% < ¢
< {L,(L,@)TF — (La)Ta) - Afta
¢ is positive because of aﬁ — aﬁ > 0. The
following constants C,, C are independent of At.
=1L (Lza)1 a — (L a)l a
C = LI~ “(al ‘7 — o),
Finally, from d = F,,(¢c) = ¢ + A4t - f(c), let us
show a — d > 0.

(7) a—d=— N-Af& — ¢ — At-f(c)
1 1
— N-AfR7 — C,- A% — At-£(c)

= ama - W+ C) - @}

e
= arta - W+ c) + Zl f_)(—cf(c))}
> Afa {— (N+Cp + C?'(—Cfa(dﬂ

Since ¢— + 0(4¢t— + 0), (7) is positive for a
sufficiently small 4¢, thus,
IAT>0st.d<a (0< VA< AT) QED.
An example of Theorem 3 is the following:

— a <0
Flw) = {( Z) (u < 0)
—u =0 O<p<a<l).
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