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1. Introduction. In this paper we shall
consider the sign of solutions of certain nonlinear
wave equations subject to suitable homogeneous
boundary conditions. It is related to the oscilla-
tion behavior of continuous finite bodies with re-
spect to the time variable.

Let 2 be a bounded simply connected do-
Ra

main in and 0O be its smooth boundary.
We suppose all functions and solutions

appeared in this paper to be real-valued. We

denote--7 (k- 1,2... n) by 0k and- by 0t.

We shall consider the nonlinear wave equa-
tion
(1) u Ot(o(t)Otu) at- fl(t)Otu + Nu 0 in

DxR+,
and the homogeneous boundary condition
(2) u(x, t) 0 on Of2 x R+,
where N is a nonlinear differential operator on x
defined exactly afterwards.

When 2V is a linear elliptic differential oper-
Aator on x D, e.g. A or the oscillating be

havior is well investigated within the framework
of the eigenvalue problems. For the linear case
we refer to Chapter 5 and 6 of [41. When :V is
nonlinear, it seems that the results have been
obtained less compared with the linear case.
Cazenave and Haraux have obtained some re-
markable results (see [31 and [71) when :V is
semilinear. In [121 results for simpler equations
than those of this paper are stated. Besides them
we referto [21 and [91.

In this paper 3/ is supposed to be more
general than that of Cazenave and Haraux. We
shall show that there exist different points (xl,
tl) and (x, t) in D x R+ such as U(Xl, t)u(x.,
t) < 0, as is the unsatisfactory result for show-
ing oscillation of u.

Elliptic differential operator of second order
is typical of A/ and in this case we prescribe the
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boundary condition to be the homogeneous Diri-
chlet boundary condition, i.e. u 0 on O.O x R+.

2,Besides we can consider 2V to be th order for
rn 2,... with suitable boundary conditions.
For simplicity we shall treat only the rn--2
case. Then we prescribe its boundary condition
to be one concerned with a supported edge. Here
we shall state the second order case in detail.

We don’t prove the existence of solutions of
initial-boundary value problems satisfying (1),
(2) and suitable initial conditions with suitable
compatibility conditions, but we suppose the ex-

istence of unique global solutions in time (see A.2
in {}3 and A.5 in {}4).

2. Preliminary results. In this section we
shall prepare and collect several auxiliary re-
sults.

Let c, , 7"" R--’ R be continuous, and c be
a positive function of C 1. We define the ordinary
differential operator l by
(3) l(ly) (t) (a(t)y’(t))’ + fl(t)y’(t) + 7"(t)y(t),

d
where means dr"

Lemma 2.1. Let x(t) and y(t) satisfy (lx) (t)
<_ 0 and (ly)(t)= 0 in [to oo) associated with

X(to) Y(to) and x" (to) Y’ (to) for any fixed to,
respectively. If y(t) >--0 and x(t) =/: 0 for t >--to,
then x(t) <-- y(t) for t >-- to.

Proof Since
y(Ix) x(ly) {a(x’y- xy’)} + fl(x’y- xy’) <_ O,
we get

a(t) (x’y xy’) (t) exp(ft---to (s)c(s) ds-)
<_ a(to (x’y xy’) (to O,

whence (x’y- xy’)(t) <--O. It follows from (x’y
xy’) (t) <- 0 and x(t) 4= 0 that

y(t)x(t)) >0.

Hence we have x(t) g y(t) for t --> to. Q.E.D.
In subsequent sections we shall apply the re-

sult which assures the existence of zeros of solu-
tions of the differential equation ly 0 to obtain
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our theorems. There are many established results
concerning the existence of zeros (see [61 and [81).
We adopt the following result.

Lemma 2.2. (Leigton and Kreith). Let ce
C, , 9" C and ce > O. If for any real number h,

ce(t) dt=
oo and

li_m {2ce(t) -I- [?’(s) s}dS :
Then every nontrivial solution of ly 0 has an in-

finite number of zeros in every interval of the form
[h, oo).
For the proof we refer to [8].

We state one more established result con-
cerning the eigenvalue problem for second order
elliptic partial differential operators. We give the
selfadjoint differential operator by

(4) u (a,(x)u + b(x)u)
i,j=l

b(x)Ou + c(x)u,
i=1

where 2? satisfies the following conditions
1. ai(x) a(x) and 2? is selfadjoint in

2. there exists a positive number such that

,=1 ai,(x) >--cl 1 for any x 2
and e5 R",

3. LP has bounded coefficients.
Lemma .3. Let . be the elliptic operator

defined in (4). Then . has a countably infinite dis-

crete set of eigenvalues. The minimum eigenvalue /2
is simple and has a positive smooth eigenfunction .
For the detailed statement and the proof we refer
to I51 or [71.

3. Second order ease. In this section we
shall treat the nonlinear second order wave equa-
tion.

Let
(5) Wu 9-(t)LP(A(x, t u)u} + b(x, t u)u,
where is the operator defined in (4). We sup-
pose that A(x, t;u) and b(x, t;u) are func-
tions of x, t and some quantities related to u, i.e.
u itself, its derivatives or/and its integrals etc.
We shall state afterward the precise assumptions
on A(x, t; u) and b(x, t u).

Now we consider

(6) flu Ot(ol(t)Otu) + i(t)Otu + dV’u 0 in
I2 x R*.

As a typical example of (6) we give the Kirchhoff
equation

Otu- const.(1 + IIV 115Au- O,

where lieu II- f X:_-i Ieu(t, x)Idx. As a

typical b we give b(x, t;u) u wherep is a
natural number.

We shall investigate oscillating behavior of
the solutions of Eq. (6) satisfying the homoge-
neous Dirichlet boundary condition
(7) u(x, t) 0 at (x, t) X2 x R+.
We set assumptions A. 1, A. 2 and A. 3.

A.1 The coefficients of , i.e. or, fl, )’" R
--) R satisfy the conditions stated in Lemma 2. 2.

A.2 Let to be any fixed number of R
+

and
(uo, u1) be any element of V L2(), where V=
H(D). We consider the initial-boundary value

problem (6) and (7) associated with the initial con-

dition u(x, to) Uo(X) and Otu(x, to) u(x).
Then

1. there exists a global smoooth solution u such
that
u C(R+ lO C(R/ if(T2))

C (R+ V’)
where V" is the dual space of V,

2. the uniqueness of the solution holds in the
sense that if u(x, to) tu(x, to) O,
then u(x, t) vanishes in Q R+.

Concernig the results of the unique existence
of global solutions of the initial-boundary value
problems for nonlinear wave equations we refer
to [7], [10], [11] and the references of [7].

A.3 1. The minimum eigenvalue /2 of
stated in Lemma 2.3 is not zero.

2. There exists a constant a such that 0 a
<_ A (x, t u) if 2 >0 or O < A (x, t u)
<_aif, <0.

3. b(x, t u) >_ 0 for every (x, t, u).
Now we state our theorem.

Theorem 3.1. Suppose that A.1, A.2 and

A.3. Let u be the solution stated in A.2. If u does
not vanish identically, there exist some (x, t) and

(x, tO [2 x R + such that u(xx, t)u(xz, tz)
<0.

Proof. Let , be the minimum eigenvalue of .
and (x)be its corresponding positive eigenfunc-
tion. We put

U(t) f u(x t) (x)dx.

Then owing to 1. of A.2 we have

(8) U" (t) J2 Otu (x, t) (x) dx and
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u" (t) f 9t u(x, t) (x) dx.

By integrating by parts we have

(A (x t u) u} (x) dx

f A(x, t u) u.(x)dx

Because of /, we have

9) {A (x t u) u} (x) dx

--/ jA(x, t u) uO (x) dx.

We multiply (6) by . Then by (8) and (9) we
have
(10) (a(t) U’)’ + fl(t) U’ 27(0 x

fA(x, t u)udx f b(x, t u)udx.

Let u(x, to > 0 for any x and to R+.
Then there exists some time interval I with to as
its left end point such that u(x, t 0 for any
(x, t) 2 I. We shall show the length of I to
be finite.

When we suppose that u(x, to < O, we also
get the same conclusion.

From u(x, to 0 in I and (x) > 0
in we have U(t) O. From A.3 we obtain in I

the right hand side of (10) <-- aT(t)U(t)
for either , > 0 or/ < 0.

Thus we have the differential inequality in I
(11)(c(t) U’(t))" + fl(t) U’(t) + a2r(t) U(t) <_ O.
We shall show that there exists some finite T
to such that U(T) 0.

We consider the ordinary differential equa-
tion for t >_ to

(a(t)v’(t))’ + fl(t)v’(t) + a(t)v(t) 0(12)
V(to) U(to) and v’(to) U’(to).

Since a, fl and a/T satisfy the conditions of Lem-
ma 2. 1, we get

0 U(t) <- v(t) in I.
If I is an infinite interval, there exists tl I
such that v(tl) 0 because a, fl and a/T satisfy
the conditions of Lemma 2.2. Hence there exists

t2(<_ t1) in I such that U(t2) O. It is contradic-
tion. Thus I is finite, whence there exists
to such that U(T) O.

Let I (T--, T+)be an interval in
R+ for any positive . If u(x, t) < 0 for some
(x, t) I, we have the desired result.
We suppose that u _> 0 almost everywhere in

Q I. After this we omit "almost everywhere"
in this paragraph. From U(T) 0 we get
u(’, T): 0 in . Then we can say that
tu( T)---0 holds in 2. We shall show the
fact. Because of u C(R+ L) there exists

tu( T) in L(Q) and a suitable sequence {hn}
with]hn] < e such that

(13) lim
u(x, T / h,) u(x, T)

h,-.o hn O,u(x, T)

0 as hn --o 0.
Nothing that u(x, T) 0 and u(x, t) >-- 0 in
Q I, it follows from (13) that tu(x, T) <-0
if hn > 0 and 8tu(x, T) >- 0 if hn < 0. Hence
we get 8tu(x, T) 0 in . Thus we have

u(’, T) 8tu(’, T) 0 in .
Therefore it follows from the uniqueness of A.2
thatu= 0in 2 R/.

Thus we have proved this theorem. Q.E.D.
4. Higher order ease. In this section we let

nonlinear operator dV be higher even order than
2. If we suppose dY and the boundary operator
satisfy suitable conditions, we can show the same
result as in Theorem 3.1. For simplicity we shall
consider our problem for the following equation.
(14) :Vu r(t)Ao(t u)Au 6(t)A{A(x, t; u)u}

+ b(x, t;u)u,
where A is the Lapalace operator. We assume
that Ao(t; u), A(x, t; u) and b(x, t; u) satisfy
the following assumption.

A.4 1. Ao(t u) is independent of x and con-

tinuous on t.
2. There exists a constant ao such that 0 < ao

-< A0(t; u).
3. A (x, t; u) and b(x, t; u) satisfy the same

conditions as those of A.3.
We shall treat the following problem associated
with a suitable initial condition.

u O,(a(t)O,u) + fl(t)Ou + AZu 0
(15) in Q R+

u(x, t) Au(t, x) =O on 9 R+.
In addition we set assumptions A.5 and A.6
A.5 For any smooth initial data (Uo, u)

there exists a unique smooth solution u satisfying
(15).

A.6 / is the minimum eigenvalue stated in

Lemma 2.3. o(t), fl(t) and ao,eT(t) + a/((t)
satisfy the same conditions as o(t), fl(t) and T(t)
in Lemma 2.2 respectively.
For the existence and the uniqueness of solutions
concerning A.5 we refer to [1].
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Theorem 4.1. Suppose that A.3, A.4, A.5
and A.6. Let u be a smooth solution of (15). If u
does not vanish identically, there exist some (x, t)
and (x, t) X2 x R+ such that u(x, t)u(x,
t) < O.

Proof We can prove this theorem in a simi-
lar fashion as the argument in Theorem 3.1. We
use the same eigenfunction and the correspond-
ing eigenvalue / > 0 as in Theorem 3.1 for
A. We put

U(t) f.o u (x, t) el) (x) dx.

We multiply the equation flu 0 in (15) by q
and integrate it by parts. Then we have

(a(t) U’)’ + fl(t) U’

r(t) Ao(t;u)uqbdx 28(t) x

A (x, t u)ucdx b(x, t u)uqbdx.

Then letting u(x, to) > 0 in D for any fixed to,
we have from A.4
(a(t) U’)’ + B(t) U’ + (ao2r(t) + a,6(t)) U <_ O.
By applying A.5 and A.6 instead of A.1 and A.2,
the rest of the argument is the exactly same as
the corresponding part in the proof of Theorem
3.1 and will be omitted. Thus we have the de-
sired result. Q.E.D.
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