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1. Introduction. The classical Borsuk-
Ulam theorem states that if a continuous map f"
Sn--- Rn

is Z2 O(1)-equivariant with the anti-
podal involutions, then f-l(0) is not empty. We
consider G-spaces X, Y and a G-map f" X--
Y, i.e., continuous and G-equivariant. The pur-
pose of this note is to extend Borsuk-Ulam
theorem for a G-map.

Here, let X V,n(R re+n) be the Stiefel man-
ifold, the space of orthonormal m-frames in
Rre+n, and let Y= (R+k) be a space of
m-tuples of vectors in R+k. Then we can regard
X-- V(Rm+) and Y-- (R+) as the ortho-
gonal group O(m)-spaces naturally. Now let f"
Vm(Rm+) -- (R+) be an O(m)-map.

To generalize Borsuk-Ulam theorem, let us
replace {0} ,to the subspace of (Rm+), denoted

(R m"). Cby onsisting of all linearly dependent

vectors in Rm+u. Note that (R’k) m is O(m)-
invariant. Now take any O(m)-map f
v(R+) --, (R+).

In this note, we are concerned with the orbit
space A/O(m). For rn 2, the following
theorem has been known (cf. [2; Theorem 5. 2]):

Theorem. If k < and f" V.(R+)
(R+) is a map then dirn(H*(A]/O(2))) >-2n
-k- 2, where we use the Alexander-Spanier
cohomology with coefficients in Z.

We generalize the above theorem as follows:
Theorem 1.1. If rn >_ 2 and k< n, then

H (A/ O(m)) =/= 0 for some 1 >- rnn k rn.

Furthermore we also obtain the following:

Theorem 1.2. (i) If m= 2, n= 2s- 1 and
k =/= 2t- 1, then Hn-) (A/0(2)) = 0, (ii) If m
=3, n=2s- 2 and k= 2t- 2, then H
(A/ 0(3)) = 0. (iii) If m >- 2, n-- 2s- m q- 1
and k 2 m, then H (A/O(rn)) 4:0 for l
2n+rn-k--4.

Preparing a general theory of index in [}2,
we obtain the O(m)-index of the Stiefel manifold
in 3. We prove Theorems 1.1 in 4 and 1.2 in
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2. Ideal valued index of a G-space. Let G
be a compact Lie group, EG and BG be its uni-

versal and classifying spaces respectively. Then
for any G-space X, denote by EG X the orbit
space of the diagonal G-action on EG X.

The index of X is given as follows:

(2.1) The projection p" EG X--* BG induces
the homomorphism H*(BG) ---* H*(EG 6 X).
We set

IndvX Ker(p*).
This index satisfies the following:

(2.2) ([2; Proposition 2.3]) Let X and Y be
G-spaces and f X--* Y be a G-map. Then

IndvX Ind Y.
(2.3) ([2; Theorem 2.4]) Let X and Y be

G-spaces and Y Y be a G-invariant closed sub-
space. Then

indVf -1 (. indv (y indVX.
If the given G-action on X is free, then the

projection EG 6X--*X/G induces the iso-
morphism H*(X/G) ---* H*(EG 6 X).

[}3. The index of O(m)-spaees. In this sec-
tion, we study the index of O(m)-spaces. The
universal O(m)-spaces is the Stiefel manifold
Vm(R=), and its orbit space is the Grassmann
manifold G,n(R=). The cohomology ring of
Gm(R0) is the polynomials Z2[wl,..., wm] of the
Stiefel Whitney classes Wr H(Gm(R**))(1 <- r
Km). Thus we obtain the polynomials 2
HS(Gm(R*))(s >_ 1) of wl,..., w by the formu-
la

(1 + W + "- Wm) (1 + + $ + -") 1.

Let ](m, n)be the ideal of H*(G,(R))
generated by 1+,..., ,+. The inclusion i"
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Gm(R m+n) ---* G,n(R) induces the epimorphism
"* * ") H* m+,,)"H (Gm(R )---* (Gm(R and its
kernel is ](m, n). Hence we have"

(3.1) [2" Theorem 3.3] Ind
(m) Vm(Rm+n)

](m, n).

Let J(m, n) r J(m, n) [ H r(Gm (ROO)
and

r(r, n)" Hr-n-S(Gm(R))
lsm

Hr(Gm(R))
be a homomorphism given by

T(r, n) (xl,. Xm) l+nXl -- + m+nXm
for x Hr-n-S(Gm(R)). Then

(3.2) [2; Lemma 3.5] ImT(r, n) J(m, n) r.

Let f" Vm(Rm+n) -- (Rm+k) m be an O(m)-
map, and set (Rm+k) om (Rm+k) m (Rk) m.
By [4" Lemma 3 1 (Rm+k)m0 is O(m)-equiva-
riantly deformable to Vm(Rm+k), and hence
indO/) (Rm+) m indO/) m+).o Vm(R Therefore
the following holds by (2.3) and (3.1):

(3.3) [2" Theorem 4.1l IndmA’J(m, k)

J(m, n).

4. The proof of Theorem 1.1. In this sec-
tion we set r mn. Then we have the following:

Lemma 4.1. (i) J(m, n) r Hr(Gm(R)).
(ii) r(r,k)" Hr--S(Gm(R))---Hr(Gm(R))

lsm

is surjective for k < n.
Proof Since dimGm(Rm+n) r, we have

nr(Gm(R))/J(m, l) r - Hr(Gm(Rm+’))
__
Z

for 1 n and 0 for 1 < n. Hence (i) holds, and
(ii) follows immediately:from (3.2).

Q.E.D.
Proof of Theorem 1.1. By the above lemma we

can choose (xl, Xm) Hr-k-s(Gm (R))
lsm

satisfying T(r, k)(xi,..., Xm) :J(m, n).

Assume that xs Ind(m)A for any 1 <-s
<- m. By (3.3) we get

T(r, k)(x,..., Xm) Ind(m)A J(m, n).

This contradicts the first condition Therefore

Xs Indm)Az for some 1 -< s-< m, and hence
Hr-- (A, / O(m) =/= O.
Thus the proof of the theorem is completed

Q.E.D.

5. The proof of Theorem 1.2. By using

the results of H. Hiller [3], we show Theorem 1.
2.

Proof of Theorem 1.2. (i) In the case
m 2, n 2s- 1 and k :/: 2t- 1. By [3;

2k 2n
Theorems 2.3 and 3.3], w ](2, k) and Wl

2n-2kJ(2, n). From (3.3) it follows that w
Ind<)A, and hence H2-2(A/0(2)) :# 0.

(ii) In the case m 3, n 2s-2 and k=
2t- 2. By [3; Theorem 3.3 and Lemma 4.6],

2n+2 2k+3
wl J(3, n) and w J(3, k). Thus H2n-k-

(A/O(3)) #= O.
(iii) In the case m_> 2, n= 2s- m+ 1

and k 2t- rn. By [3; Proposition 2.2 and
k+m 2(n+m-2)

Theorem 3.3], W ( J(m, k)and w
J(m, n). Then H2n+m-k-4 (Af / O(m) ) :/: O. Tere-
fore the proof of the theorem is completed.

Q.E.D.
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