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1. Introduction. Let X be a compact or open Riemann surface,
M(X) denote its meromorphic function field and let Div(X) denote the group
of divisors on X. We are interested in the following question: how are the
structures of M(X) and Div(X) reflected to the conformal (or topological)
structure of X. In this note, we are concerned with principal transformations
between two Riemann surfaces (introduced by Nakai and Sario [12]). In par-
ticular, we are interested in the existence and the non-existence of special
principal transformations between two Riemann surfaces.

Definition 1.1. Let X and Y be Riemann surfaces. A bijection @ of X to
Y is a principal transformation provided that for every divisor D = X7, n,P,
on X, D is principal (i.e. the divisor of a meromorphic function) if and only
if ®(D) = X7, n,®(P,) is a principal divisor on Y.

Of course, if @ is a principal transformation, so is @ .

Next, we give the definition of special principal transformations. Again,
let X and Y be Riemann surfaces. Let ¢ be an isomorphism of M(X) onto
M(Y) as abstract fields. It was proved by Bers [2] that ¢ induces an auto-
morphism of C. For simplicity’s sake, in this note, we always assume every
isomorphism satisfies 6(Y— 1) = +/— 1. Then, associated to ¢ we have a bi-
jection @ of X to Y satisfying o | o(f° 07'(P)) = g(f)(P) for every fE
M(X) and P € Y. For a complete proof of this fact, the reader should be re-
ferred to [9, 11, 12]. This shows that a divisor 2 #;P; € Div(Y) is the di-
visor of a(f) if and only if = #,0 " (P,) is the divisor of f modulo non-zero
holomorphic functions. Hence, 0 'isa principal transformation and so is .

Definition 1.2. We say that a principal transformation is special if it is
induced by an abstract field isomorphism of meromorphic function fields of
two Riemann surfaces.

Assume X and Y are conformally equivalent. Let ¢ be a conformal map-
ping of X onto Y. Then, 0:f+ f° ¢ ' is an isomorphism of M(X) onto
M(Y). Obviously, ¢ |o(f* ¢ (P)) = a(f) (P) for every f€ M(X) and P €
Y. Hence, every conformal mapping of X onto Y is a special principal trans-
formation.

Conversely, if X and Y are open, every special principal transformation
is a conformal mapping (Iss’sa[9], Nakai[11], Nakai and Sario[12]). In case X
and Y are compact, however, it is not necessary a conformal mapping
(Heins[7], Kato[10], Gouma[6]).

In the next section, we shall prove that if there exists a principal
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transformation between two Riemann surfaces, these Riemann surfaces are
simultaneously open or compact (Theorem 2.1). In Section 3, we show that
there exists a non-special principal transformation between compact
Riemann surfaces of genus one (Theorem 3.3). This relates to the closing
problem of Nakai and Sario [12]. We are not interested in case of genus zero,
because every bijective self-mapping of the Riemann sphere is a principal
transformation.

It remains the following question: for compact Riemann surfaces of
genus greater than one, does there exist a non-special principal transforma-
tion? By Theoem 3.4, if there exists, it should be discontinuous.

The author represents his thanks to Katholieke Universiteit Leuven, De-
partement Wiskunde for their kind hospitality during his stay and to the
JSPS for financial support. He also thanks to Professor K. Hulek with whom
he discussed about this material.

2. A property of principal transformations. In this section, we prove
the following:

Theorem 2.1. Let X and Y be Riemann surfaces. Assume theve exists a
principal transformation between X and Y. Then, X and Y are simultaneously
compact or open. If they ave compact, they are topologically equivalent, i.e. they
have the same genera.

Remark 2.2. Although Nakai and Sario [12] stated their assertion in
terms of isomorphisms of meromorphic function fields, actually, they proved
the above assertion in the context of their proof using the boundedness prop-
erty of principal transformations. Gouma [6] gave an alternative proof for the
assertion of Nakai and Sario. We shall give a proof without appealing to the
boundedness property of principal transformations. Our proof is also differ-
ent from Gouma's one.

Proof. Assume X is open. Let @ be a principal transformation of X to
Y. Let P be an arbitrary point on X. By the Behnke-Stein-Florack theorem,
there exists a meromorphic (actually, holomorphic) function f on X whose di-
visor is P. Since @ is principal, @(P) is a principal divisor i. e. there exists
F € M(Y) whose divisor is @(P). Evidently F is a nonconstant holomorphic
function on Y. Hence, Y is open. Since @' is also principal, vice versa.

Assume X and Y are compact of genus g(X) and g(Y), respectively. Let
P be an arbitrary point on X. Let 0 <n, <#n, < -+ <n; < -+ be the
nongaps at P, i.e. the complementary set of the Weierstrass gap sequence at
P in N*. Then, there exists a sequence of functions {f} in M(X) such that
the polar divisor of f; is #;P. Since @ is principal, there exists a sequence
{F;} in M(Y) such that the polar divisor of F; is n,0(P). Hence, {n;} is a
subset of the non-gaps at ®(P). Since g(X) =*(N* — {n}), we have
g(Y) < g(X). Applying the same argument to @, we have g(X) = g(1).

Remark 2.3. The proof of the second assertion of Theorem 2.1 shows
that many conformal invariants, the Weierstrass gap sequence, the gonality,
the Clifford index etc. (for the definitions of these terms cf. [1, 3, 4, 5]), are
also invariant under principal transformations.



No. 2] Principal Transformations 39

3. Existence of special principal transformations. In this section we are
concerned with the existence and the non-existence of special principal
transformations of compact Riemann surfaces.

Let X be a compact Riemann surface of genus g =2 1. Let w,,...,w, be a
basis of the space of holomorphic differentials on X. Choosing a base point
P, € X, we have the map uy of X to the Jacobian variety J(X) = C*/A

P P
defined by uy(P) = (f Wiy ooy f wg>, where A is a lattice generated by
P, P,

the period matrix. For D = 2 n,P; € Div(X), we set uy(D) = 2 nuy(P)).
Then, #, can be extended to the map of Div(X) to J(X). Abel's theorem
states that for divisors D;, D, € Div(X) of the same degree, D, — D, is a
principal divisor if and only if ux(D,) = uyx(D,). As usual, we denote by
W,(X) the image of all positive divisors of degree d on X under uy. It is
well known that J(X) = W,(X) and W,(X) is biholomorphic to X. (cf.
Arbarello et al[l], Farkas and Kra[5] etc.)

Lemma 3.1. Let X and Y be compact Riemann surfaces of the same genus
and let @ be a bijection of X to Y. Then, @ is a principal transformation if and
only if there is an (abstract) isomorphism @ of J(X) to J(Y) satisfving that
O uy = uy® and O*(W,(X)) = W, (V).

Remark 3.2. We have to be careful to use the term “isomorphism.” In
this lemma, @* is an isomorphism of abstract abelian groups.

Proof. Assume that @ is a principal transformation. Let D, D, €
Div(X) be divisors of the same degree such that #y(D,) = uy(D,). Then, by
Abel’s theorem, D; — D, be a principal divisor on X. Since @ is a principal
transformation, @(D; — D,) = @®(D,) — ®(D,) is a principal divisor on Y.
Again, by Abel's theorem, u,(®(D,)) = u,(®(D,)). Hence, there is a
well-defined map ®* satisfying @*°ux = uy°®. It is evident by construction
that @™ is an isomorphism and ®* (W, (X)) = W,(Y).

The converse is similar. This completes the proof.

If X is of genus one, then J(X) = W,(X) and we may assume that A is
generated by {1, ¢} for some 7 € C in the upper half plane (i.e. Im 7 > 0).
Let Y be another Riemann surface of genus one. Assume the lattice associ-
ated to J(Y) is generated by {1, p}, with Im o > 0. Set f(2) = az + bz,

o7 _T—op L .
where a = - b= ppny Then, it is easy to see that f(2) is an
isomorphism of J(X) to J(Y). Noting that #, and %, are biholomorphic, by
Lemma 3.1, we have #3 °f°u, is a principal transformation of X to Y.

Hence, for every pair of compact Riemann surfaces of genus one, there
is a principal transformation between them.

On the other hand, there are infinitely many pairs of compact Riemann
surfaces X, Y of genus one such that M(X) is not isomorphic to M(Y) (|6,
10, 12]). Hence, we have:

Theorem 3.3. For infinitely many pairs of compact Riemann surfaces X, Y
of genus one, there exist non-special principal transformations.

Non-special principal transformations constructed above are continuous.
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Contrary to the case of genus one, in case of genus greater than one we have:

Theorem 3.4. Let X and Y be compact Riemann surfaces of genus g > 1.
If there exists a continuous principal transformation @ of X to Y, then X and Y
are conformally equivalent and @ is special.

Proof. It is obvious that @™ constructed in the proof of Lemma 3.1 is
also continuous. Since J(X) and J(Y) are Lie groups, every continuous iso-
morphism of J(X) to J(Y) is real analytic [8]. Hence, ®* is a real analytic
isomorphism of J(X) onto J(Y), so it can be extended to a real analytic auto-
morphism of C*. Therefore, @* is a linear transformation of R* to itself. If
@™ were not holomorphic, W,(Y) would not be an analytic variety. This is a
contradiction. Hence, 0" is holomorphic and so is @. Then, it is obvious that
X and Y are conformally equivalent and @ is induced by an isomorphism of

M(X) to M(Y).
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