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(.3)

Theorem 3.
not hold is 1.

1. Introduction. Let (tg, P)be the Lebesgue probability space, i.e.,
Y2 := [0,1) and P is Lebesgue measure. In this note, we regard any function
on 2 as a function on R with period 1. The Rademacher system is a system
{ri} of random variables on (Q, P) defined by

r(w) "= li0,/)(w) + 111/2.,1) (w) and r(w)"= r(2-w), (i 2).
Note that (r + 1)/2 gives the i-th digit of the dyadic expansion of a real
number w. Since {r} is i.i.d., the De Moivre-Laplace theorem claims that the
law of

1 , r, ()x(m()
.=

converges weakly to the standard normal distribution, as m .
y(m,a)(w) X (m)(w + na) for n Z and a R, and studyWe put--n

the limit behaviour of the sequence {Xn }z as m . Since this se-
quence is given by iterating the Weyl automorphism, it is stationary and, in
most cases, dependent. Having studied the quasi-Monte Carlo method, Sugita

[6] conjectured that the dependence disappears as m , for almost all
He proved that, for almost all a,
R (’) (k) "= Et(m’")("’">,., .,+ o(m-) asm (kN 0<<1/2)
We prove the following results related to the conjecture.

Theorem 1. For almost all with respect to Lebesgue measure, any finite
(m,)

dimensional distribution of {Xn }nz converges weakly to the multi-

dimensional standard normal law as m i.e., for all n Z and k N,
Y("’") X (m’"> N(O I) as m(1 1) .._, ,+_,

Here denotes convergence in law, and I the k-dimensional unit matrix.
Theorem 2. For any , the correlation R (m’a) (k)" E,--n "’n+ ) is

given by
1

(1.2) R (m’") (k) = .. (2-ka), where (z) "= 4w 2 1, (w ).

Moreover, for any k N and for almost all with respect to Lebesgue mea-
sure, it holds that

limsup log logm
The Hausdorff dimension of the set of a for which (1.1) does

Remark. We can improve Theorem 3 as follows: The Hausdorff dimen-
sion of the set of c such that finite dimensional distribution of {Xn(m’a)}nz
converges to that of some stationary dependent gaussian sequence is 1. The
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proof will be given in a forthcoming paper.
2. Proof of Theorem 1. First we prove two lemmas.
Lemma 1. For any sequence {oi} of real numbers, the sequence {r/’((,o) :--

r(w + o)) is an i.i.d, on (2, P).
Proof Clearly, we have P(r{-- 1) -P(r;- 1) 1/2. To prove

the independence, it is sufficient to prove

(2.1) P(r= ,..., r ) <_ 1
(e +/- 1 i= 1 n, n N)

1,
t-- =l= l, (i= n) 2n

and thereby we see that the equality in (2.1) holds.
Take t +/- 1 arbitrarily and put A: {(.o Q r(w) t}. The

next property of A is easily verified: If w, w’ /2 satisfy o of + (2j
1)/2 (rood 1) for some j Z, then either w A or w’ A.

Now, we define a mapping Tn:Q--* [0,1/2n) by T(w):= (2nw
[2w])/2. If A is a measurable subset of/2 such that the restriction T, [A of
T, to A is injective, then Tn la is obviously measure-preserving and thereby
the inequality P(A) P(Tn(A)) _< 1/2 holds.

Here, we prove that T la...a, is injective, from which (2.1) follows.
The proof is by contradiction. Suppose that co, w" A (q An satisfy
w < (.o’ and T(w) Tn(of). Then there exists a k [1,2") f3 Z such that
oo" w + k/2n. Factoring k, we have k 2h(2j + 1) (h [0, n) [’) Z and
j Z), from which w’ w + (2j + 1)/2- follows. As we mentioned be-
fore, either w An_h or (.o’ E An_h. This contradicts the assumption

A3 A,.
Lemma 2. Suppose that p, q Z satisfy p < q. Then, for almost all

with respect to Lebesgue measure,

(2.2) lira
i

r(w + pa)r(w + qa) O, P-a.e. w.
m--.oo m i=

Proof. Since the sequence {ri(co)ri(coz)) is an i.i.d, on ( Q, P P),
by the law of large numbers, we have

lim
1

r(w)r(w) 0 P P-a.e. (w w)
m-.oo m i=l

Since ri is periodic, the Lebesgue measure of RZ\M is O, where M is given
by

M "= (o), o.) R lim - r(w) r(w) 0

Since the linear transformation T (co, cO -’ (co + pc, co + qcO is regular,
the Lebesgue measure of T-(R\ M) is O. Therefore, for almost all (w,

lim 1__ r (co + pcO r (w + qc) O.
m--,oo m i=1

By Fubini’s theorem, we have the conclusion.
To prove Theorem 1, we use the next theorem due to McLeish [5].
Theorem A. Let (m, 1 <_ j <-- km) be a triangular arra of random vari-
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ables and put L "= IIj<k,,(1 + -- 1 t,). The law of j<k,. ,n, converges
to the standard normal distribution as m oo, provided that the following four
conditions are satisfied for all t R:

(1) EL --" 1 as m --* oo

(2) The sequence {L,n}meN is uniformly integrable"

(3) < ks m, --* 1 in probability as m --, oo

(4) max,<ks ,1 -- 0 in probability as m--* oo.
Because of Lemma 2, it is sufficient for us to prove (1.1) assuming (2.2)

for all p < q. We put n 1 in (1.1), since the sequence is stationary. We
prove that, for any al,..., ak satisfying a21 -t- -+- a 1, the law of

T (re,a)aX(’a) + -F a.. converges to the standard normal law. Because of
Cramer-Wold’s theorem (Theorem 7.7 in Billingsley [2]), this is equivalent to
(1.1).

Putting r/i(w) "= = ari(oo + ja), we have

Fli.alxm’a) + + ak.,, k
";

We note the following two properties
(a) v, < k;
(b) E(r]i,... r]is) 0, for anyi < < is ands N.
(a) is trivial. (b) is verified by expanding , into a linear com-

bination of
rh(w+ja) r,(W+jsa), = 1,..., k, t= 1,...,s),

and by noting that the expectations of these are 0 because of Lemma 1.
Putting k "= m and , "= /, we apply Theorem A to prove the

convergence. The four conditions are easily verified: EL 1 follows from
(b); By (a), we have [L IN (1 + tZk2/m)/2 t2k2/2

e which implies (2);
Since ,(w) 1 is expanded into a linear combination of the sums
in (2.2), (3) follows from the assumption; (4) is clear from (a).

3. Proof of Theorem 2. By using Lemma 1, we have
1

E(r()r( + ka)).y (m,a)y (re,a)R (’") (k) --o "’k m
An easy calculation gives E(r(w) r(w + ka)) p(ka). Since the dyadic
transformation is measure preserving, we have

E(r(w)r(w + ka)) E(r(2-w)r(2-E(r(w)r(w + 2i-ka))
p (2’-tka).

These prove (1.2). To prove (1.3), we apply the following law of the iterated
logarithm due to Maruyama [4]"

lim sup
1 p(2-x) a, a.e. x,_ 2mloglogm

where

(z)x + 2

The last evaluation of ’s easily iven by (z) 2r(x) z 2-r()
4. Proof of Theorem . We follow the method of Hawkes (Proof of
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Theorem 4 of [3]). We introduce a Bernoulli i.i.d. {Yn} on another probability
space (12o, Po) such that Po{Y,- 0} q and Po{Y,= 1} -p, (p+q=
1) Let pp be the law of 2-=1 Y. We can easily verify that pp is a prob-
ability measure on 12 and that, on the probability space (, p), the dyadic
transformation w 2w is measure-preserving and ergodic.

Because of (1.2) and the ergodicity, we have

R(,-) (1) (x)p(dx), as m , p-a.e.

The last integral is evaluated as follows: By the definition of

(x) (dx) Eo 2-Y
i=0 i=2

Since 0 < -=22 K 1/2, wehave (X)(dx) (1-- 2p) .
Now we recall the following result by Billingsley ([1] p. 141 onwards):

Hausdorff dimension of A is equal to or greater than e "= (p logz
p + q logzq) if (A) > 0. Then, we see that R<m’>(1) (1- 2p) z

holds
on the set of whose dimension is at least e.

(m,a) 4E(Xd ) K 4 implies the uniform integrability of {xm’xm’>}ms.
Thus, Rm’>(1) 0 follows from (1.1).

Therefore, the dimension of the set of a such that (1.1) does not hold is
at least e (p l/2). Taking the supremum, .we have. the conclusion.
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