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1. Introduction. Let (£, P) be the Lebesgue probability space, i.e.,
2 :=1[0,1) and P is Lebesgue measure. In this note, we regard any function
on £ as a function on R with period 1. The Rademacher system is a system
{7} of random variables on (£, P) defined by

7(@) 1= — 1110 (@) + 1,0 (@) and 7,(w) 1= 2 w), (= 2).

Note that (#; + 1)/2 gives the i-th digit of the dyadic expansion of a real
number w. Since {7;} is i.i.d., the De Moivre-Laplace theorem claims that the
law of

X(m)(w) C = .L % ri(w)
m =1

converges weakly to the standard normal distribution, as m — oo,

We put X" (w) := X" (w + na) for n € Z and a € R, and study
the limit behaviour of the sequence {X,,(m’a)},,ez as m— . Since this se-
quence is given by iterating the Weyl automorphism, it is stationary and, in
most cases, dependent. Having studied the quasi-Monte Carlo method, Sugita
[6] conjectured that the dependence disappears as m — oo, for almost all a.
He proved that, for almost all «,

R™ (k) := EX XY = om™) asm— o, (kEN,0<B<1/2).
We prove the following results related to the conjecture.

Theorem 1. For almost all a with respect to Lebesgue measure, any finite
dimensional distribution of {X\"*},c, converges weakly to the multi-
dimensional standard normal law as m—> © ; i.e., foralln € Zand k € N,
(1.1) x™ Xm0y B N, 1,) as m— oo.

Here > denotes convergence i law, and I, the k-dimensional unit matrix.

Theorem 2. For any a, the correlation R™* (k) := E (X,:m’a)X,:T,’cw) is
given by

(m,a) _ 1= i-1 .
(1.2) R™"(k) = —75121 027 ka), where p(x) 1= |4x— 2| — 1, (x € ).
Moreover, for any k € N and for almost all @ € R with respect to Lebesgue mea-
sure, it holds that

. m,a 2
(1.3) lim sup /ﬁg—ﬁk‘ ‘W = 5.

Theorem 3. The Hausdorff dimension of the set of & for which (1.1) does

not hold is 1.

Remark. We can improve Theorem 3 as follows: The Hausdorff dimen-
sion of the set of a such that finite dimensional distribution of {X,,(m’a)},,ez
converges to that of some stationary dependent gaussian sequence is 1. The
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proof will be given in a forthcoming paper.

2. Proof of Theorem 1. First we prove two lemmas.

Lemma 1. For any sequence {a,;} of real numbers, the sequence {r{(w) :=
ri(w + @)} is an iid. on (2, P).

Proof. Clearly, we have P(r;= — 1) = P(;=1) =1/2. To prove
the independence, it is sufficient to prove

1 .
(21) PUri=¢,...,7,=e)<— (,==x1,i=1,...,n n€N).

n

Actually, from (2.1), we have
1= > P(rl=51,...,r;=en)32%=1,
g=t1,(i=1,..m) 2
and thereby we see that the equality in (2.1) holds.

Take ¢; = * 1 arbitrarily and put A4;:= {w € Q:7/(w) =¢;}. The
next property of A, is easily verified: If w, " € 2 satisfy w = o’ + (25 +
1)/2" (mod 1) for some j € Z, then either w € A, or &’ € A,

Now, we define a mapping T, : 82— [0,1/2") by T,(®) := 2"w —
[2"w])/2" 1f A is a measurable subset of £ such that the restriction T, |, of
T, to A is injective, then T, |A is obviously measure-preserving and thereby
the inequality P(4) = P(T,(A)) < 1/2" holds.

Here, we prove that T, |A1n...nA,, is injective, from which (2.1) follows.
The proof is by contradiction. Suppose that w, o € A; N ... N A, satisfy
w < o and T,(w) = T,(«’). Then there exists a k € [1,2") N Z such that
@ = w + k/2". Factoring k, we have k =2"(2j+ 1) (h € [0, ) N Z and
j € 2), from which @ = w + (2j + 1)/2"" follows. As we mentioned be-
fore, either w € A,_, or w € A,_,. This contradicts the assumption w, @’
€EAN...NA,.

Lemma 2. Suppose that p, q € Z satisfy p < q. Then, for almost all o
with respect to Lebesgue measure,

m
(2.2) lim % Zl ri(w + pa)ri(w + qa) =0, P-a.e. w.
m—roo 1=

Proof. Since the sequence {r;(w)7;(w,)} is an iid. on (R X 2, P X P),
by the law of large numbers, we have

m
lim 1 21 r(w)7,(w,) =0, P X P-a.e. (w,, w,).

m—oo

Since 7; is periodic, the Lebesgue measure of R’\ M is 0, where M is given
by

M:= {(wl, w,) € R*| lim L% rilw)r(w,) = 0]'

m—oco m i=
Since the linear transformation T : (w, @) = (0 + pa, w + qa) is regular,
the Lebesgue measure of T (R*\ M) is 0. Therefore, for almost all (w, a),
m
lim 1 2 7w+ pa)r,(w + gqa) = 0.
m—oo i=1
By Fubini’s theorem, we have the conclusion.
To prove Theorem 1, we use the next theorem due to McLeish [5].
Theorem A. Let {{,;;1 <7< k,} be a triangular array of random vari-
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ables and put L, := Lo, (1 +vV—1t(, ;). The law of Z;<,, C; converges
to the standard normal distribution as m— &, provided that the following four
conditions are satisfied for all t € R:

(1) EL,— 1l asm—

(2) The sequence {L,} men is uniformly integrable ;

(3) <k, € ;— 1 in probability as m — o ;

(4) max; <, | Com.i | =0 in probability as m—> 0,

Because of Lemma 2, it is sufficient for us to prove (1.1) assuming (2.2)
for all p < q. We put # =1 in (1.1), since the sequence is stationary. We
prove that, for any a,, ..., @, satisfying af + -+ az =1, the law of
ale(m'm + -+ a,,X,:m'a) converges to the standard normal law. Because of
Cramér-Wold’s theorem (Theorem 7.7 in Billingsley [2]), this is equivalent to
(1.1).

Putting 7,(w) := Z)_, a,7,(w + ja), we have

a X" + -+ a X" = L )3 ;.
m =1
We note the following two properties of {n;}:

(a) l N | < k;

(b) E(m;, ... m;) =0, forany ¢, < -+ < i and s € N.

(a) is trivial. (b) is verified by expanding 71; ... %, into a linear com-
bination of

rilw+ja ... rnlwtjm, G=1,..kKkt=1,..,9,
and by noting that the expectations of these are O because of Lemma 1.

Putting k,, := m and {,,,; := n,/Vm, we apply Theorem A to prove the
convergence. The four conditions are easﬂy verified: EL,, = 1 follows from
(b); By (a), we have | L, | < Q + £#K*/m)™* < 'k/z, which implies (2);
Since 2<y,, g2 (@) — 1 is expanded into a linear combination of the sums
in (2.2), (3) follows from the assumption; (4) is clear from (a).

3. Proof of Theorem 2. By using Lemma 1, we have

R™® (k) = EX™X ™ = % S EG ()7, (0 + ka)).
i=1

An easy calculation gives E(r,(w)7,(w + ka)) = ¢ (ka). Since the dyadic
transformation is measure preserving, we have
E () (o + ka) = E¢,27 ' 0)r, 2w + 27 ka))
= E(r,(w)n (@ + 2" ka))
= 02 ka).
These prove (1.2). To prove (1.3), we apply the following law of the iterated
logarithm due to Maruyama [4]

3 i-1
hmm_.sfp V2m log log m /< Z 92 2) =0, ae. .z,
where
1 oo 1 . 1
2 _ 2 j _1
o= [ d@wa+2E [ o@e@ni= 3.

The last evaluation of o is easily given by ¢ () = 27, X7, 2777,@).
4. Proof of Theorem 3. We follow the method of Hawkes (Proof of
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Theorem 4 of [3]). We introduce a Bernoulli i.i.d. {¥,} on another probability
space (R, Py) such that P,{Y, =0} =q and P{Y,=1}=p, p+qg=
1). Let #, be the law of Z;;l 2_ij. We can easily verify that y, is a prob-
ability measure on £ and that, on the probability space (£2, u,), the dyadic
transformation w — 2w is measure-preserving and ergodic.

Because of (1.2) and the ergodicity, we have

R™¥ (1) — f @ p,(dr), as m— o, y,-a.e. a.
2
The last integral is evaluated as follows: By the definition of y,,

_ S =i
[ o@u, @0 = B, o( 27Y)
L iLoE :
=2 EPo‘p(E + 22 Y,> PY, = i};
i=0 j=2
Since 0 < =7, 27'¥; < 1/2, we have _]; e@p,dr) = (1 — 2p)°

Now we recall the following result by Billingsley ([1] p. 141 onwards):
Hausdorff dimension of A C £ is equal to or greater than e, := — (plog,
p + qlog, @ if #,(A) > 0. Then, we see that R™* (1) — (1 — 2p)* holds
on the set of & whose dimension is at least e,.

EX.")* < 4 implies the uniform integrability of {X,"*X;"%},ex.
Thus, R™% (1) — 0 follows from (1.1).

Therefore, the dimension of the set of & such that (1.1) does not hold is
at least e,(p ¥ 1/2). Taking the supremum, we have the conclusion.
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