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95. Elliptic Factors of Selberg Zeta Functions

By Masao TSUZUKI

Department of Mathematical Sciences, University of Tokyo

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 13, 1993,)

We show that the elliptic factors of Selberg zeta functions are expressed
in terms of multiple gamma functions.

1. Elliptic factors. Let X G/K be a rank one symmetric space of
non compact type, where G is a connected semisimple Lie group with finite
center, and K is a maximal compact subgroup of G. Put fl Lie(G),
t Lie(K) and let tic, tc be their complexifications. We assume that rankG

rankK and fix a Caftan subgroup T of G which is contained in K. We
choose a system of positive roots of q)(flc, tc) and a singular imaginary root
c in O+(flc, tc). Let G- KARN be an Iwasawa decomposition of G. From
the assumption, AR is a one dimensional real torus. We identify aR with R as
in [11]. Let P0 be the half of the sum of positive roots in q(g, aR). Let M be
the centralizer of dR in K, and A be a Cartan subgroup of M. Let m, aR, aI

be the Lie algebras of M, AR, d, and me, aR,C, aI,C their complexifications
respectively. Let /" be a discrete subgroup of G such that vol(G/1-) < co.
We define the elliptic factor of the Selberg zeta function for (G, /’)as a

smooth function Ze(s) on a half interval (a, co) of R which satisfies the
identity

( 1 d) fo
+

s(s_oo)tt_* 2 (s Po) ds log Ze (s) I (ht) e- ldt
for a positive integer m, where Ie denotes the elliptic term of the Selberg
trace formula for (G, D, and h is the spherical fundamental solution of the

heat equation A +- u 0 on X. By this definition Z(s) is determined

up to a factor exp(P(s- P0)), where P(s) is an even polynomial. We calcu-
late the right hand side of (*) using the Fourier inversion formula of elliptic
orbital integrals [11], and determine Ze(s) as a finite product of multiple
gamma functions.

[}2. Results. Let $r be the set of elliptic conjugacy classes of F, con-
sisting of all conjugacy classes of finite orders. For " 8r, we denote by nr

its order. We choose an element tr of T which is conjugate to " in G;tr is
unique up to the action of the Weyl group W W(G, T). Let Gr be the ten-

+ +
tralizer of tr in G and gr be its Lie algebra. We write r qt the sets of all
positive roots in O(gr,c, tc), O(mc, a,c) and rr, r their cardinalities
respectively. For each element w W, put

P,() II (w(-- O + va,), ) ( R),

where p is the half of the sum of roots in [. For an integral R /" I t*,
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denote the corresponding unitary character of T. We define complex num-
0 (j)

bers_r (7)(1 <j< rr) as follows"

(7") d(7")-l( 1)’ (- 1) TM p(’(-) (tr)
W/W

where

r is an integer such that --p, +-at is a (c, tc)-integral element,
1

means j-th derivative of Pr,,o, Wr W(Gr, T), Wr W(r.c, to), qr =-1 1
dim(Gr/K), q =-dim(G/K), and Pr- -,(;fl. We take the Euler

Poincar6 measure on Gr as in [3]. We now state our main theorem.
Theorem. (1) There exists a smooth function Ze(s) which satisfies (*),

and it is expressed in Re(s) > Po as follows"
1I
78r

where

O<r<2nr "j=O 2nr
r=e(mod2)

cJ)(T) (-- 1)rtn (O(j )j+l
j[ (r) (-- 1 + (r)),

o (G SU(2n. 1)).
s

1 (otherwise)
Gj(z) is a multiple gamma function of Barnes, and defined by means of Weier-

strass product as follows ([1], [8], [9]).

n)l

where PC (x) (1 x)exp x + + + and r is the Euler constant.

(2) When F is cocompact, the above Z(s) has a meromorphic continuation to
the whole complex plane and has possible simple poles or zeros at s Po + l for

Z with s mod 2. The order of zero at s Po + l is given by
(o) 0o)(-- 1) r’ vol(F G) (_ (r) (r)).

Remarks. (1) An explicit form of Zr(S)for central r’s have been

obtained by Kurokawa by different method ([61, [71).
(2) For cocompact F, the number

N(o)

appearing in the above formulae is, up to a sign, identified with an alternat-
ing sum of dimensions of certain LZ-cohomology spaces in [3].
(3) We define the completed Selberg zeta function Z(s) as follows"

2(s)
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where the first three factors of the right hand side are regarded as gamma
factors of the zeta function. According to the recent results of Jorgenson and
Lang [4], one can obtain determinant expression of Z(s) under the assump-
tion that its gamma factors are themselves expressed as regularized pro-
ducts. This assumption is satisfied for the identity factor and the elliptic fac-
tor by the results of Kurokawa [7] and ours. By using the results of Rezni-
kov [10], the parabolic factor also has determinant expression when G is
S0(21, 1) (/ 1) or SU(2n, 1)(/ 1) and / is its congruence subgroup.
The regularized products expression of Z(s)are known in some special
cases [51.

3. Proof of the theorem. By definition, we have
Ie,,(ht) E vol(Yr Vr)er(h,) (t > 0),

where r(h) ,(x-t) dx

,ka dxr
From the Fourier inversion formula of [11], Or(ht) can be written as a finite
linear combination of integrals of following type"

f+
e 2 --(--1) P 2h(P t) 3_ 2fi() z du,

e -(-1) e
where P is a polynomial with coefficients in R, e {0, 1}, and is a real

number in 2’ Hence, the calculation of Z(s) is reduced to that of

the integrals

and

--S(S--2Po)tr(s, m) e r(ht) tm-dt,

t(S-Oo)2t, tm-I (P s, m) e- -o(P t) ldt.

This is given as follows. Let 0 --n-(l, n z, zc < 20 < 7r), and t

{0, 1}. We first obtain

( 2 (s --1 dsd)m-1I(P s, m) Oo)
12(s- po)I (P s)

I (P;s)

( s’-p4-r)4n
O r<4n

r=e(mod 2)

where ((s) is the logarithmic derivative of the gamma function, and
d

rn > deg(P). Let 0j+l(s) log Gj+(s) (s > 0), then Q(s) +(s)

s(s) is a polynomial. So it holds that

p()(a+2n i) dee(P) (--n) ,,,)(_i) +, (a+ i)+ R(s)
=o J! 2n
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for a polynomial R(s). Thus we have

d) (--n) (s-- Po + r)2(s Oo)Io(P" s) 4-- 1 2 +n o< r<4n =o J! 4n
r-- (mod 2)

x {P(j)(-)e--r42- PJ)()er} + R(s)

for a polynomial R(s) and m > deg(P). Now from the results of [11], we
have

Wr(S, m) 8IW(M A,)ld(r) X (- 1)’("’ X (- 1)

x x(tr) (sgnO) I,+so,{(Pr,, ;s, m),
where X is the unitary character of A with differential p, {w} is a com-
plete set of representative of Wr in W, and for each w, 0 is the real number

-2 0such that a,(wtr)= e (-- < 20 < ), and e is given in the
theorem. Consequently, we obtain r(s, m) for m > rr as follows.

g(s, ) 2 (s Oo) ds g(s),

where

orr (Y) 1 (S-po+r)2 (s Po) r(S) . Cr -+ 2nrO r< 2n "=
r--s (mod 2)

This gives our expression of Ze(s) via multiple gamma functions.
Since b+.(s) has simple poles at s n (n Z, n < 0), with residue

(- n)’,
(s) X vo(F \ ) (s)

has a possible simple pole at s Po + l (l Z, l s (mod 2)) and
A <o) 0[o)Res (s) (-- 1) r’ vol(Fr \ Gr) (,_ (r) (7")).

S=Po+l
When G/F is compact, this is an integer [3]. Thus we have a meromorphic

d
Ze (s) satisfying log Ze (s) (s)
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