95. Elliptic Factors of Selberg Zeta Functions

By Masao TSUZUKI

Department of Mathematical Sciences, University of Tokyo (Communicated by Shokichi IYANAGA, M. J. A., Dec. 13, 1993)

We show that the elliptic factors of Selberg zeta functions are expressed in terms of multiple gamma functions.

§1. Elliptic factors. Let X = G/K be a rank one symmetric space of non compact type, where G is a connected semisimple Lie group with finite center, and K is a maximal compact subgroup of G. Put g = Lie(G), $\mathfrak{t} = \text{Lie}(K)$ and let \mathfrak{g}_C , \mathfrak{t}_C be their complexifications. We assume that rank G= rank K and fix a Cartan subgroup T of G which is contained in K. We choose a system of positive roots of $\Phi(\mathfrak{g}_C, \mathfrak{t}_C)$ and a singular imaginary root α_i in $\Phi^+(\mathfrak{g}_C, \mathfrak{t}_C)$. Let $G = KA_RN$ be an Iwasawa decomposition of G. From the assumption, A_R is a one dimensional real torus. We identify \mathfrak{a}_R with R as in [11]. Let ρ_0 be the half of the sum of positive roots in $\Phi(\mathfrak{g}, \mathfrak{a}_R)$. Let M be the centralizer of A_R in K, and A_I be a Cartan subgroup of M. Let m, $\mathfrak{a}_R, \mathfrak{a}_I$ be the Lie algebras of M, A_R , A_I , and \mathfrak{m}_C , $\mathfrak{a}_{R,C}$, $\mathfrak{a}_{I,C}$ their complexifications respectively. Let Γ be a discrete subgroup of G such that $vol(G/\Gamma) < \infty$. We define the elliptic factor of the Selberg zeta function for (G, Γ) as a smooth function $Z_{ell}(s)$ on a half interval (\mathfrak{a}, ∞) of R which satisfies the identity

$$(*) \qquad \left(-\frac{1}{2(s-\rho_0)}\frac{d}{ds}\right)^m \log Z_{ell}(s) = \int_0^{+\infty} I_{ell}(h_l) e^{-s(s-2\rho_0)t} t^{m-1} dt$$

for a positive integer m, where I_{ell} denotes the elliptic term of the Selberg trace formula for (G, Γ) , and h_t is the spherical fundamental solution of the heat equation $\left(\Delta + \frac{\partial}{\partial t}\right)u = 0$ on X. By this definition $Z_{ell}(s)$ is determined up to a factor $exp(P(s - \rho_0))$, where P(s) is an even polynomial. We calculate the right hand side of (*) using the Fourier inversion formula of elliptic orbital integrals [11], and determine $Z_{ell}(s)$ as a finite product of multiple gamma functions.

§2. Results. Let \mathscr{E}_{Γ} be the set of elliptic conjugacy classes of Γ , consisting of all conjugacy classes of finite orders. For $\gamma \in \mathscr{E}_{\Gamma}$, we denote by n_{γ} its order. We choose an element t_{γ} of T which is conjugate to γ in G; t_{γ} is unique up to the action of the Weyl group W = W(G, T). Let G_{γ} be the centralizer of t_{γ} in G and g_{γ} be its Lie algebra. We write Φ_{γ}^+ , Φ_I^+ the sets of all positive roots in $\Phi(g_{\gamma,C}, t_C)$, $\Phi_I = \Phi(m_C, a_{I,C})$ and r_{γ} , r_I their cardinalities respectively. For each element $w \in W$, put

$$P_{\gamma,w}(\nu) = \prod_{\beta \in \Phi^{\ddagger}} (w(-\rho_I + \nu\alpha_i), \beta) \quad (\nu \in \mathbf{R}),$$

where ρ_I is the half of the sum of roots in Φ_I^+ . For an integral $\lambda \in \sqrt{-1} t^*$,

denote ξ_{λ} the corresponding unitary character of *T*. We define complex numbers $\theta_r^{(j)}(\gamma)$ $(1 \le j \le r_{\gamma})$ as follows:

$$\theta_{r}^{(j)}(\gamma) = d(\gamma)^{-1}(-1)^{q_{\tau}} \sum_{w \in W/W_{\tau}} (-1)^{l(w)} P_{\tau,w}^{(j)}\left(\frac{r}{2}\right) \xi_{w\left(-\rho_{I}+\frac{r}{2}\alpha_{I}\right)}(t_{\tau}),$$

where

$$d(\gamma) = |W_{\gamma}^{C}| [G_{\gamma}: G_{\gamma}^{0}] (\prod_{\beta \in \Phi_{\gamma}^{+}} (\rho_{\gamma}, \beta)) \hat{\xi}_{\rho}(t_{\gamma}) \prod_{\beta \in \Phi^{+} - \Phi_{\gamma}^{+}} (1 - \hat{\xi}_{-\beta}(t_{\gamma})),$$

r is an integer such that $-\rho_I + \frac{r}{2}\alpha_t$ is a $\Phi(g_C, t_C)$ -integral element, $P_{r,w}^{(j)}$ means *j*-th derivative of $P_{r,w}$, $W_r = W(G_r^0, T)$, $W_r^C = W(g_{r,C}, t_C)$, $q_r = \frac{1}{2}$ $dim(G_r/K_r)$, $q = \frac{1}{2} dim(G/K)$, and $\rho_r = \frac{1}{2} \sum_{\beta \in \Phi_r^+} \beta$. We take the Euler Poincaré measure on G_r as in [3]. We now state our main theorem.

Theorem. (1) There exists a smooth function $Z_{ell}(s)$ which satisfies (*), and it is expressed in $Re(s) > \rho_0$ as follows:

$$Z_{ell}(s) = \prod_{\tau \in \mathscr{B}_{\Gamma}} Z_{\tau}(s)^{vol(\Gamma_{\tau} \setminus G_{\tau})}$$

where

wher

$$Z_{\gamma}(s) = \prod_{\substack{0 \le r < 2n_{\gamma} \\ r = \varepsilon \,(\text{mod}2)}} \left(\prod_{j=0}^{r_{\gamma}} G_{j+1} \left(\frac{s - \rho_0 + r}{2n_{\gamma}} \right)^{c_{\gamma}^{(j)}(\gamma)} \right),$$

$$c_{r}^{(j)}(\gamma) = \frac{(-1)^{r_{I}} n^{j}}{j!} \left(\theta_{-r}^{(j)}(\gamma) \left(-1 \right)^{j+1} + \theta_{r}^{(j)}(\gamma) \right),$$

$$\varepsilon = \begin{cases} 0 \quad (G = SU(2n, 1)).\\ 1 \quad (otherwise) \end{cases}$$

 $G_j(z)$ is a multiple gamma function of Barnes, and defined by means of Weierstrass product as follows ([1], [8], [9]).

$$G_{j+1}(s)^{-1} = exp\Big(\frac{(-1)^{j}\gamma}{j+1}s^{j+1} + \frac{(-1)^{j}}{j}s^{j}\Big) \prod_{n \ge 1} P_{j+1}\Big(\frac{-s}{n}\Big)^{n'},$$

$$e P_{j}(x) = (1-x)exp\Big(x + \frac{x^{2}}{2} + \cdots + \frac{x^{j}}{i}\Big), \text{ and } \gamma \text{ is the Euler constant.}$$

(2) When Γ is cocompact, the above $Z_{ell}(s)$ has a meromorphic continuation to the whole complex plane and has possible simple poles or zeros at $s = \rho_0 + l$ for $l \in \mathbb{Z}$ with $l \equiv \varepsilon \mod 2$. The order of zero at $s = \rho_0 + l$ is given by $(-1)^{r_l} \sum vol(\Gamma \setminus C)(\theta^{(0)}(r) - \theta^{(0)}(r))$

$$(-1) \stackrel{r}{\xrightarrow{}} \underset{\gamma \in \mathscr{B}_{\Gamma}}{\operatorname{vol}(\Gamma_{\gamma} \setminus G_{\gamma})} (\theta_{-1}(\gamma) - \theta_{1}(\gamma)).$$

Remarks. (1) An explicit form of $Z_{\gamma}(s)$ for central γ 's have been obtained by Kurokawa by different method ([6], [7]).

(2) For cocompact Γ , the number

$$\sum_{\gamma \in \mathscr{B}_{\Gamma}} vol(\Gamma_{\gamma} \setminus G_{\gamma}) \,\theta_{-l}^{(0)}(\gamma),$$

appearing in the above formulae is, up to a sign, identified with an alternating sum of dimensions of certain L^2 -cohomology spaces in [3].

(3) We define the completed Selberg zeta function $\hat{Z}(s)$ as follows:

$$Z(s) = Z_{id}(s) Z_{ell}(s) Z_{par}(s) Z_{\Gamma}(s),$$

where the first three factors of the right hand side are regarded as gamma factors of the zeta function. According to the recent results of Jorgenson and Lang [4], one can obtain determinant expression of $\hat{Z}(s)$ under the assumption that its gamma factors are themselves expressed as regularized products. This assumption is satisfied for the identity factor and the elliptic factor by the results of Kurokawa [7] and ours. By using the results of Reznikov [10], the parabolic factor also has determinant expression when G is SO(2n, 1) $(n \ge 1)$ or SU(2n, 1) $(n \ge 1)$ and Γ is its congruence subgroup. The regularized products expression of $\hat{Z}(s)$ are known in some special cases [5].

§3. Proof of the theorem. By definition, we have

$$I_{ell}(h_t) = \sum_{\substack{\tau \in \mathscr{E}_T \\ \tau \in \mathscr{E}_T}} vol(\Gamma_{\tau} \setminus G_{\tau}) \mathscr{O}_{\tau}(h_t) \quad (t > 0),$$

where $\mathcal{O}_{\tau}(h_t) = \int_{G_{\tau} \setminus G} h_t(x^{-1}t_r x) \frac{dx}{dx_{\tau}}$.

From the Fourier inversion formula of [11], $\mathcal{O}_r(h_t)$ can be written as a finite linear combination of integrals of following type:

$$h_{\theta}^{\varepsilon}(P;t) = \int_{-\infty}^{+\infty} 2\hat{h}_{t}(\nu) \frac{e^{\nu\theta} P\left(\frac{\sqrt{-1}\nu}{2}\right) - (-1)^{\varepsilon} e^{-\nu\theta} P\left(-\frac{\sqrt{-1}\nu}{2}\right)}{e^{\pi\nu/2} - (-1)^{\varepsilon} e^{-\pi\nu/2}} d\nu,$$

where P is a polynomial with coefficients in \mathbf{R} , $\varepsilon \in \{0, 1\}$, and θ is a real number in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Hence, the calculation of $Z_{ell}(s)$ is reduced to that of the integrals

$$\Psi_{\gamma}(s, m) = \int_0^\infty e^{-s(s-2\rho_0)t} \mathcal{O}_{\gamma}(h_t) t^{m-1} dt,$$

and

$$I_{\theta}^{\varepsilon}(P;s,m) = \int_{0}^{\infty} e^{-t(s-\rho_{0})^{2}} h_{\theta}^{\varepsilon}(P;t) t^{m-1} dt.$$

This is given as follows. Let $\theta = \frac{l\pi}{n}(l, n \in \mathbb{Z}, -\pi \leq 2\theta \leq \pi)$, and $\varepsilon \in \{0, 1\}$. We first obtain

$$I_{\theta}^{\varepsilon}(P; s, m) = \left(-\frac{1}{2(s-\rho_{0})}\frac{d}{ds}\right)^{m-1}I_{\theta}^{\varepsilon}(P; s)$$

$$2(s-\rho_{0})I_{\theta}^{\varepsilon}(P; s) = \frac{\sqrt{-1}}{n}\sum_{\substack{0 \le r < 4n \\ r = \varepsilon \,(\text{mod}\,2)}} \psi\left(\frac{s-\rho_{0}+r}{4n}\right)$$

$$\times \left\{P\left(\frac{s-\rho_{0}}{2}\right)e^{-\frac{\pi-2\theta}{2}r\sqrt{-1}} - P\left(\frac{\rho_{0}-s}{2}\right)e^{\frac{\pi-2\theta}{2}r\sqrt{-1}}\right\},$$

where $\psi(s)$ is the logarithmic derivative of the gamma function, and m > deg(P). Let $\psi_{j+1}(s) = \frac{d}{ds} \log G_{j+1}(s)$ ($s \gg 0$), then $Q_j(s) = \psi_{j+1}(s) - s_j \psi(s)$ is a polynomial. So it holds that

$$P\left(\frac{\sigma}{2}\right)\psi\left(\frac{\sigma+i}{2n}\right) = \sum_{j=0}^{\deg(P)} \frac{(-n)^j}{j!} P^{(j)}\left(\frac{-i}{2}\right)\psi_{j+1}\left(\frac{\sigma+i}{2n}\right) + R(s)$$

No. 10]

M. TSUZUKI

for a polynomial R(s). Thus we have

$$2(s - \rho_0) I_{\theta}^{s}(P; s) = \frac{\sqrt{-1}}{n} \sum_{\substack{0 \le r < 4n \\ r = s \pmod{2}}} \sum_{j=0}^{\deg(P)} \frac{(-n)^j}{j!} \psi_{j+1} \left(\frac{s - \rho_0 + r}{4n}\right) \\ \times \left\{ P(j) \left(\frac{-i}{2}\right) e^{-\frac{\pi - 2\theta}{2}r\sqrt{-1}} - P^{(j)} \left(\frac{i}{2}\right) e^{\frac{\pi - 2\theta}{2}r\sqrt{-1}} \right\} + R(s)$$

for a polynomial R(s) and m > deg(P). Now from the results of [11], we have

$$\Psi_{\gamma}(s, m) = \frac{\sqrt{-1} |W_{\gamma}| (-1)^{\gamma_{I}}}{8 |W(M, A_{I})| d(\gamma)} \sum_{u \in W_{I}} (-1)^{I(u)} \sum_{w_{i}} (-1)^{I(w_{i})} \times \bar{\chi}_{I}^{u}(t_{\gamma}) (sgn\theta_{i})^{\varepsilon} I_{\theta_{i}+sgn\theta_{i}\frac{\pi}{2}}^{\varepsilon}(P_{\gamma,w_{i}u}; s, m),$$

where χ_I is the unitary character of A_I with differential ρ_I , $\{w_i\}$ is a complete set of representative of W_r in W, and for each w_i , θ_i is the real number such that $\xi_{\alpha_i}(w_i^{-1}t_r) = e^{-2\sqrt{-1}\theta_i}$ ($-\pi \leq 2\theta_i < \pi$), and ε is given in the theorem. Consequently, we obtain $\Psi_r(s, m)$ for $m > r_r$ as follows.

$$\Psi_{\gamma}(s, m) = \left(-\frac{1}{2(s-\rho_0)}\frac{d}{ds}\right)^{m-1}\Psi_{\gamma}(s),$$

where

$$2(s - \rho_0) \Psi_{\tau}(s) = \sum_{\substack{0 \le r < 2n_{\tau} \\ r = \varepsilon \pmod{2}}} \sum_{j=0}^{r_{\tau}} c_r^{(j)} \frac{1}{2n_r} \psi_{j+1}\left(\frac{s - \rho_0 + r}{2n_{\tau}}\right)$$

This gives our expression of $Z_{ell}(s)$ via multiple gamma functions. Since $\psi_{j+1}(s)$ has simple poles at s = -n ($n \in \mathbb{Z}$, $n \leq 0$), with residue $-(-n)^{j}$,

$$\Psi(s) = \sum_{\gamma \in \mathscr{E}\Gamma} vol(\Gamma_{\gamma} \setminus G_{\gamma}) \Psi_{\gamma}(s)$$

has a possible simple pole at $s = \rho_0 + l$ ($l \in \mathbb{Z}$, $l \equiv \varepsilon \pmod{2}$) and $\operatorname{Res}_{s=\rho_0+l} \Psi(s) = (-1)^{r_l} \sum_{\gamma} vol(\Gamma_{\gamma} \setminus G_{\gamma}) (\theta_{-l}^{(0)}(\gamma) - \theta_l^{(0)}(\gamma)).$ When G/Γ is compact, this is an integer [3]. Thus we have a meromorphic

When G/Γ is compact, this is an integer [3]. Thus we have a meromorphic $Z_{ell}(s)$ satisfying $\frac{d}{ds} \log Z_{ell}(s) = \Psi(s)$.

References

- Barnes, E. W.: On the theory of the multiple gamma function. Trans. Cambridge Philos. Soc., 19, 375-425 (1904).
- [2] Gangolli, R.: Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank 1. Illinois Jour. Math., 21, 1-41 (1977).
- [3] Hotta, R., and Parthasarathy., R.: Multiplicity formulae for discrete series. Inv. Math., 26, 133-178 (1974).
- [4] Jorgenson, J., and Lang, S.: On Cramers theorem for general Euler products with functional equation (1993) (preprint).
- [5] Koyama, S.: Determinant expression of Selberg zeta functions. 1; 2. Trans. Amer. Math. Soc., 324,149-168 (1991); 329, 755-772 (1991).
- [6] Kurokawa, N.: Multiple sine functions and Selberg zeta functions. Proc. Japan Acad., 67A, 61-64 (1991).
- [7] ----: Gamma factors and Plancherel measures. ibid., 68A, 256-260 (1992).

- [8] Kurokawa, N.: Lectures on multiple sine functions (at Univ. of Tokyo) (1991).
- [9] Manin, Y. I.: Lectures on zeta functions and motives. Max Planck Institute preprint (1992).
- [10] Reznikov, A.: Eisenstein matrix and existence of cusp forms. G. A. F. A., 3, 79-105 (1993).
- [11] Sally, P. J., and Warner. G.: The Fourier transform on semisimple Lie group of real rank one. Acta. Math., 131, 1-26 (1973).
- [12] Vignéras, M. F.: L'equation fonctionelle de la fonction zéta de Selberg du groupe modulaire PSL (2,Z). Astérisque, 61, 235-249 (1979).