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76. Resonance in the Cauchy Problem
of a Parabolic Equation

By Kunio NISHIOKA

Department of Mathematics, Tokyo Metropolitan University
(Communicated by Kiyosi ITO, M. J. A., Oct. 12, 1993)

1. Introduction. Let ¢ be a natural number, and we consider the
Cauchy problem of the following strongly pzarabolic equation of 2¢-th order :

q
(1) @—((—1)“+b(t x))aZ t>0, z€R,

(2) u(0, ) = uy(x), re< R,
where an initial data #, and a coefficient b satisfy Assumption 1 (this and
the other terminology are defined at §2). In [6], it is proved;

Proposition. Let Assumption 1 hold, then there exists a unique wide sense

solution u of (1) with (2). In addition there is a constant ¢, such that
(3) lim || u(t,-) — c.l, = 0.

t—o0

Thus in the present note, we announce that ¢, can be calculated from b
and #,, and its value changes drastically whether u, resonates with b or not.

On c,, only a few results have been known. If one of the following (a)
and (b) hold:

(a) ¢ = 1, b is real valued and independent of £, and for a constant #,,

u, — u, € £,(R,
(b) bis independent of x and there is a constant %, such that
0

= lim f uy(x) dr = lim %j:m uy(x) dz,

L—+oo L—+oeo
then it is known in [3, 4, etc.] and [1] that
(4) Coo = Uq.
But (4) does not make clear delicate relation between ¢, and b, because the
both conditions above prevent that #, resonates with b. In this sense, (4) is
very different from our result.

Our method to calculate ¢, is based on an extended Girsanov type for-
mula. The usual Girsanov formula is well known in the theory of probability.
It works when first order terms are added to a second order parabolic equa-
tion. Besides it, we introduced the extended Girsanov type formula in [5],
which works when same order terms are added to a 2¢-th order parabolic
equation. By this formula, the wide sense solution # of (1) with (2) is repre-
sented in a series, which enables us to calculate c,,.

2. Notations. Let A = 0, and let ' (®") be a set of all complex valued
measures #(d&) such that

lul= [ a+1ehlul@s <o

where | ¢ | denotes total variation of g. As well known, M (RY) is a Banach
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algebra under convolution % and norm | o ||1

We denote by F'(®) a Banach space of all Fourier transforms of
MR ie. fE FRY is written as (5) for a U € M (@Y, and we define
A= Ly ,. Note that F°(RY) contains the Schwartz class, constants, etc.

Put " = [0, ) and let M°(R*, R") be a set of all complex valued
measures 1 (¢, d&), t € R* such that

(@) n(t, & € MR for each t€ R*

®) Int,) —nG,)l,—0 ast—sonR".
As before, F'(R*, R") denotes a set of all Fourier transforms of JI°(R*, RY),
that is functions which are written as (6) for an n € M°(R*, RY).

Throughout the note, we suppose:

Assumption 1. (a) u, € F (R'), that is

(5) u,(x) = f exp{i€x} 1,(d& for a u, € M°(RY).
(b) b€ F @R, R | that is
(6) b(t, 2 = [ explita) n,(t, d&) for ann, € M @", B).
(c) In (6), n, has a structure
(7) n,(¢, d&) = h,(¢, & v,(db),
where a continuous function hy(t, x) and v,(d&) € M°(RY) satisfy
(8) 1> sup |h,| and 1>|y,],
tHeR xRL

Next we specify a solution of the Cauchy problem of (1).

Definition 2. A function v(¢, 2) € F'(®*, R") is called a wide sense
solution of (1) with (2), if there exists a sequence

(™, D, u (@) ;m =1} € F@RT, B) x FY@RY

such that;

(a) lim,,_.. [lug” — u,l, =0 and

lim,, ... supye;<p l0™ (t,") — v(t,*) |, = O for any T > 0.

(b) For each 8*v™ /0z™, ov™ /6t € F°(R*, RY), and v™ is a classic-
al solution of (1) with an initial condition #(0, ) = u,"” (x) instead of (2).

3. A combination of resonance. For the measures in (5) and (7), we de-
fine

9) Kuy) ={y<s®;|u ) >0 — {0}

(10) Kb) ={ze®";|v,|({z) >0} — {0}.

Note that K(u,) and K(b) are both countable sets at most, by Assumption 1.
Definition 3. Take natural numbers m,, k=1, ...,l, a point y €

K(uy), and points z,’s € K(b), k= 1,...,,,suchas 2z, < 2z, < *-- < 2, If it
holds that
y+moz +myz,+ - +mz, =0,
then an ordered set
F= W5 20,00 0020 Zoyee sZoyee sZpye e s2))

m, m, m,

is called a combination of resonance. We denote by I' a whole of all combina-
tions of resonance, and say that u, resonates with b if I' # 0.
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Theorem 4. Let Assumption 1 hold. If u, does wot resonate with b, i.e.
I'= 0, then
Co = o ({0}).
Remark 5. (a) If K(#,) = @, then u, does not resonate with any b. For
K(u,) = @, it is sufficient that

u@ = [ explita) %) dL for a w(0) € £, &),

(b) If K(b) = @, then any u, is not resonate with b. It is sufficient for
K@) = @ that

b(t, 2 = [ explica} h,(t, & B dt for a B € £,@.

Example 1. For a natural number #, consider

2q
861; <(— D+ ; sin :c) %—u, t>0,r<€ R,
'z

2q
— 1 1
u(0, x) =u0(x) = sin (1 +m>x, rER.

1 1
n-l-l’—l_n-l-—l]’ and K(b) = {1, — 1}. So u,

does not resonate with b, and ¢, = 0 even if # is very large. Compare this
with Example 2 in §4.
§4. Resonance. Consider an ordered set € = (x,; 2,2, * ° * ,Z;)
consisting of points in ®'. For %, we define a number Q(%) as follows:
Definition 6. Case 1. If one of the following numbers
(11) Loy Lo+ Xy, Tyt 2y + 2y, Ty + Xy + 0 x5
is zero, then we define Q(€) = 0.
Case 2. If none of (11) is zero, then we define

QE®) = ﬂo({xo ) v, ({x}) - v, z}) X
% ;1{1;10 T f f<s1< <s,<t<T o .ds-" dt h"(sl’ xl) o .hb(si’ xj)

X (ixy)* exp{— x2 s,}
X (i(xy+ ) exp{— (x, + )% (s, — s}
X oo X (g + o F i )) P expl— (@ + o 2 )P (s, — s, 00
Remark 7. (a) Q(%) exists for any €, by Assumption 1.
(b) If the coefficient b does not depend on ¢, that is &, = 1, then the
above integrations can be carried out, and we get
Q®B) = (— DY u,(zyh) v,(z)) -+ y,Ux;).
Now we are in a position to state our remained assertion.
Theorem 8. Let Assumption 1 hold. If u, resonates with b, then

(12) = u,({0}) + Z >,

where Z denotes to take summation over all permutations of a combination of
resonance T except its first element y, that is all permutations of
(GRS AR AU S5

my m, m,

Here K(u,) = {1 +
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Remark 9. (a) The right-hand side of (12) always converges by
Assumption 1.

(b) Compare the following Examples 2 and 3 with Example 1 in §3, and
we see that ¢, is very sensible with respect to a little change of #,,.

(c) All argument in the note can be extended to multidimensional cases.

Example 2. We consider

(13) %‘—t‘— = ((— D+ %sin x)% t>0, re<®,
(14) u(0, x) = u,(x) = sinx, z € R.
Now K(u,) = {1, — 1} = K(b), and there are infinite combinations of reso-
nance’s. So following to Definition 6 and Theorem 8, we get

lco — (— 1D x 0.2675- -+ | < 0.014- - -.
Here it should be noted that if ¢ = 1, we happen to calculate ¢, for (13) and
(14) by the well known ergodic property of a diffusion process on a circle.
So we get

2q

e =V3—2=—0.2679--.
Example 3. Again we treat (13) with
u(0, £) = uy(x) = cosx, xR
instead of (14). K(#,) and K(b) are same as in Example 2, and %, resonates
with b, but (12) derives that
¢, = 0.
Example 4. Let us treat a second order equation of a time depending

coefficient :
2

%=<1+%sintsinx>at:, t>0, z€4R,
u(0, x) = uy(x) = sinzx, z € R.
K(u,) and K(b) are same as in Example 2, and we get
|c. +0.1178--- | < 0.0104 - - -.
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