69. On Certain Infinite Series of Dirichlet Type

By Masao ToYoIZUMI
Department of Mathematics, Toyo University
(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1993)

1. Introduction. Let α denote a fixed real number and put $M=\left[\alpha+\frac{1}{2}\right]$ +1 , where $[x]$ denotes the integral part of x. Let $h(z)$ be a complex valued function which is regular and non-vanishing in the half plane $\operatorname{Re}(z)>\alpha$. In this paper, we shall consider the infinite series of the form

$$
\phi_{h}(s, a)=\sum_{n=M}^{\infty} \frac{e(n a)}{h(n)^{s}},
$$

where $e(w)$ denotes an abbreviation of $\exp (2 \pi i w)$ and a is a real number with $0<a<1$. Here and in what follows, $h(z)^{s}=\exp (s \log h(z))$ with a fixed branch of $\log h(z)$. Moreover, we impose the following conditions on $h(z)$:
(A.1) $\psi_{h}(s, a)$ converges for all sufficiently large real values of s.
(A.2) $\log |h(z)| \ll \log |z|$ and $\arg h(z) \ll \log |z|$ for $|z| \gg 0$, where $\arg h(z)$ denotes the argument of $h(z)$.
(A.3) $|h(z)| \rightarrow \infty$ as $|z| \rightarrow \infty$.

Then we obtain
Theorem 1. Under the above assumptions, $\psi_{h}(s, a)$ is extended to an integral function of s in the whole complex s-plane.

Example 1. Let $h(z)$ be a non-constant polynomial of z with complex coefficients. Take an integer M such that $h(z)$ has no zeros in $\operatorname{Re}(z)>M-$ 1 and $\alpha=M-1$. Then $\psi_{h}(s, a)$ is absolutely convergent for $s>1$ and for any fixed branch of $\log h(z)$. Hence, by Theorem $1, \psi_{h}(s, a)$ can be continued analytically to an integral function of s.

Example 2. Let $g(x, y)$ be a polynomial in x and y with complex coefficients. Suppose that the degree of $g(x, y)$ in x is at least 1 . Take a positive integer M such that $g(z, \log z)$ has no zeros in $\operatorname{Re}(z)>M-1$, where any fixed branch is taken for the logarithm. If we take $h(z)=g(z, \log z)$ and $\alpha=M-1$, then $\psi_{h}(s, a)$ is absolutely convergent for $s>1$ and for any fixed branch of $\log h(z)$. Therefore, by Theorem $1, \psi_{h}(s, a)$ is extended to an integral function of s.

The author wishes to thank Professor T. Arakawa for useful suggestion.
2. Proof of Theorem 1. The method of the proof is similar to that of Theorem 1 in [2].

Let C be the rectangle in the z-plane consisting of the line segments C_{1}, C_{2}, C_{3} and C_{4}, joining $\xi-N i,\left(N+\frac{1}{2}\right)-N i,\left(N+\frac{1}{2}\right)+N i, \xi+N i$ and $\xi-N i$, where $\xi=M-\frac{1}{2}$ and N is a sufficiently large integer. Consider the integral

$$
I(s)=\int_{C} f(s, z) d z
$$

where

$$
f(s, z)=\frac{e(a z)}{e(z)-1} h(z)^{-s}
$$

and s is a sufficiently large real number. By the residue theorem, we have

$$
\begin{equation*}
I(s)=\sum_{n=M}^{N} \frac{e(n a)}{h(n)^{s}} . \tag{1}
\end{equation*}
$$

On the other hand, we see that

$$
\begin{align*}
I(s) & =\left(\int_{C_{1}}+\int_{C_{2}}+\int_{C_{3}}+\int_{C_{4}}\right) f(s, z) d z \tag{2}\\
& =I_{1}+I_{2}+I_{3}+I_{4}, \text { say }
\end{align*}
$$

Since $s>1$ and $\left|h(z)^{-s}\right|=|h(z)|^{-s}$, we can find a number N_{0} depending on ε such that

$$
\left|h(x-N i)^{-s}\right|<\varepsilon\left(x \geqq \xi, N>N_{0}\right)
$$

for any given $\varepsilon>0$ in view of (A.3). So we have

$$
\left|I_{1}\right|<\frac{\varepsilon e^{2 \pi a N}}{e^{2 \pi N}-1} \int_{\xi}^{N+\frac{1}{2}} d x<\varepsilon
$$

because $0<a<1$. This implies that $I_{1} \rightarrow 0$ as $N \rightarrow \infty$. Similarly, $I_{2}, I_{3} \rightarrow 0$ as $N \rightarrow \infty$. By letting $N \rightarrow \infty$, we infer from (1), (2) and (A.1) that

$$
\begin{align*}
\psi_{h}(s, a)= & i e(a \xi)\left[\int_{0}^{\infty} \frac{e^{2 \pi(1-a) x}}{e^{2 \pi x}+1} h(\xi+i x)^{-s} d x\right. \tag{3}\\
& \left.+\int_{0}^{\infty} \frac{e^{2 \pi a x}}{e^{2 \pi x}+1} h(\xi-i x)^{-s} d x\right]
\end{align*}
$$

This formula holds for all sufficiently large real values of s. Studying the behavior of the above integrals in the whole plane of the complex variable s, we see from (A.2) that both integrals of (3) converge uniformly in any finite region of the complex s-plane and so define integral functions of s. This completes the proof of Theorem 1.
3. On the values of $\boldsymbol{\phi}_{\boldsymbol{h}}(\boldsymbol{s}, \boldsymbol{a})$ at non-positive integers. We start with introducing the β-function defined by

$$
\beta(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+x}
$$

It is known (cf. [1], p. 523) that

$$
\begin{equation*}
\beta(x)+\beta(1-x)=\frac{\pi}{\sin \pi x} \tag{4}
\end{equation*}
$$

Theorem 2. $\quad \psi_{h}(0, a)=\frac{i e(a \xi)}{2 \sin (a \pi)}$, where $\xi=M-\frac{1}{2}$.
Proof. By (3), we have

$$
\begin{align*}
\psi_{h}(0, a) & =i e(a \xi)\left[\int_{0}^{\infty} \frac{e^{2 \pi(1-a) x}}{e^{2 \pi x}+1} d x+\int_{0}^{\infty} \frac{e^{2 \pi a x}}{e^{2 \pi x}+1} d x\right] \tag{5}\\
& =i e(a \xi)\left[J_{1}+J_{2}\right], \text { say }
\end{align*}
$$

As is easily verified,

$$
\begin{aligned}
J_{1} & =\int_{0}^{\infty} e^{-2 \pi a x} \sum_{n=0}^{\infty}(-1)^{n} e^{-2 \pi n x} d x \\
& =\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{\infty} e^{-2 \pi(n+a) x} d x \\
& =\frac{1}{2 \pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+a} \\
& =\frac{\beta(a)}{2 \pi} .
\end{aligned}
$$

Similarly, we get

$$
J_{2}=\frac{\beta(1-a)}{2 \pi}
$$

Then our assertion follows immediately from (4) and (5).
Put

$$
E(x)=\frac{\pi}{\sin \pi x}
$$

Let m be a non-negative integer and $E^{(m)}(x)$ the m-th derivative of $E(x)$. Then we have

Lemma.

$$
E^{(m)}(x)=\pi^{m+1} \frac{g_{m}(\cos \pi x)}{(\sin \pi x)^{m+1}}
$$

where $g_{m}(\cos \pi x)$ is a linear combination of $(\cos \pi x)^{2 j}\left(0 \leqq j \leq \frac{m}{2}\right)$ or $(\cos \pi x)^{2 j+1}\left(0 \leqq j \leq\left[\frac{m}{2}\right]\right)$ with rational integer coefficients according as m is even or odd.

Proof. The lemma is easily shown by induction on m. So we omit the proof of it.

In the following, let $h(z), M$ and $\psi_{h}(s, a)$ be as in Example 1. Let \boldsymbol{F} be a subfield of the complex number field. Suppose that all coefficients of $h(z)$ are contained in \boldsymbol{F}. Then we obtain

Theorem 3. The value $\psi_{h}(-m, a)$ belongs to the field $\boldsymbol{F}(i \cot a \pi)$ for any non-negative integer m.

Proof. By (3), $\psi_{h}(-m, a)$ is a linear combination of $J_{k}(a)(k=0,1$, $\ldots, m d)$ with coefficients in \boldsymbol{F}, where d is the degree of $h(z)$ and

$$
J_{k}(a)=i e(a \xi)\left[\int_{0}^{\infty} \frac{e^{2 \pi(1-a) x}}{e^{2 \pi x}+1}(i x)^{k} d x+\int_{0}^{\infty} \frac{e^{2 \pi a x}}{e^{2 \pi x}+1}(-i x)^{k} d x\right]
$$

By noting that

$$
\Gamma(s)=\int_{0}^{\infty} e^{-x} x^{s-1} d x(s>0)
$$

it is not difficult to see that

$$
\begin{aligned}
& J_{k}(a)=i^{k+1} e(a \xi)\left[\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{\infty} e^{-2 \pi(n+a) x} x^{k} d x\right. \\
&\left.+(-1)^{k} \sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{\infty} e^{-2 \pi(n+1-a) x} x^{k} d x\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{i^{k+1} e(a \xi) \Gamma(k+1)}{(2 \pi)^{k+1}}\left[\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+a)^{k+1}}\right. \\
& \left.\quad+(-1)^{k} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+1-\mathrm{a})^{k+1}}\right] \\
= & \frac{(-1)^{k} i^{k+1} e(a \xi)}{(2 \pi)^{k+1}}\left(\beta^{(k)}(a)+(-1)^{k} \beta^{(k)}(1-a)\right),
\end{aligned}
$$

so that from (4) we get

$$
J_{k}(a)=\frac{(-1)^{k} i^{k+1} e(a \xi)}{(2 \pi)^{k+1}} E^{(k)}(a)
$$

We remark that $e(a \xi)=e^{2 \pi i a M} e^{-\pi i a}$,

$$
\begin{aligned}
& e^{2 \pi i a M}=(-1)^{M}\left[\frac{(1-i \cot a \pi)^{2}}{1-(i \cot a \pi)^{2}}\right]^{M} \\
& \text { and } \quad(\sin a \pi)^{2}=\frac{1}{1-(i \cot a \pi)^{2}}
\end{aligned}
$$

Thus if k is even, then, by the lemma; $J_{k}(a)$ is an element of $\boldsymbol{F}(i \cot a \pi)$, because $\frac{i e^{-\pi i a}}{\sin a \pi}=1+i \cot a \pi$. Similarly, if k is odd, then $J_{k}(a)$ is an element of $\boldsymbol{F}(i \cot a \pi)$, because $e^{-\pi i a} \cos a \pi=\frac{i \cot a \pi}{i \cot a \pi-1}$. This completes the proof.

References

[1] T. J. I'A. Bromwich: An Introduction to the Theory of Infinite Series. Macmillan and Co., Ltd., London (1926).
[2] M. Toyoizumi: On certain infinite series (to appear in Tokyo J. Math.).

