68. On the Existence of Characters of the Schur Index 2 of the Simple Finite Steinberg Groups of Type $({}^{2}E_{6})^{*}$

By Zyozyu OHMORI

Iwamizawa College, Hokkaido University of Education (Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1993)

Let χ be a complex irreducible character of a finite group and k be a field of characteristic 0. Then we denote by $m_k(\chi)$ the Schur index of χ with respect to k.

It has been known that the simple group $PSU(3, q^2)$ has an irreducible character χ with $m_Q(\chi)=2$ (R. Gow [4]). In [5], (7.6), G. Lusztig found that $PSU(3, q^2)$ or $PSU(6, q^2)$ has a rational-valued irreducible character χ such that $m_Q(\chi)=m_R(\chi)=m_{Q_p}(\chi)=2$ (q is a power of p) and $m_{Q_l}(\chi)=1$ for any prime number $l\neq p$. For $PSU(3, q^2)$, this χ coincides with the one described above. In this note we shall show that the simple finite Steinberg group $^2E_6(q^2)$ has (at least) two rational-valued irreducible characters χ such that $m_Q(\chi)=m_R(\chi)=m_{Q_p}(\chi)=2$ and $m_{Q_l}(\chi)=1$ for any prime number $l\neq p$. This will follow from Lusztig's classification theory of the unipotent representations of finite groups of Lie type (see [2], pp. 480-481).

I wish to thank Professor K. Iimura for kindly answering my question on number theory.

Let \mathbf{F}_q be a finite field with q elements, of characteristic p. If X is an algebraic group defined over \mathbf{F}_q , then X(q) denotes the group of \mathbf{F}_q -rational points of X. Then we have

Lemma. Let M be a connected, reductive algebraic group, defined over \mathbf{F}_q , whose Coxeter graph is of type $(^2A_2)$ or $(^2A_5)$. Let R be a (unique) cuspidal unipotent representation of M(q), with the character χ . Then χ is rational-valued and we have $m_R(\chi) = m_{Q_2}(\chi) = 2$ and $m_{Q_1}(\chi) = 1$ for any prime number $l \neq p$.

This is stated in [5] as (7.6) without detailed proof. We shall now sketch the proof. Let X_f be as in [5], (1.7). Let l be any prime number $\neq p$. For $i \geq 0$, put $H_c^i(X_f) = H_c^i(X_f, \bar{Q}_l) = H_c^i(X_f, Q_l) \otimes \bar{Q}_l$, where \bar{Q}_l is an algebraic closure of Q_l . Then $H_c^i(X_f)$ is a $\bar{Q}_l[M(q)]$ -module defined over Q_l . Let $F: M \to M$ be the Frobenius map. Then F^2 acts on $H_c^i(X_f)$. Let r be the semisimple rank of M. Let V be the F^2 -eigensubspace of $H_c^r(X_f)$ corresponding to the eigenvalue -q (resp. $-q^3$) if r=2 (resp. if r=5). Then V is an irreducible M(q)-module and is isomorphic to R. As $H_c^r(X_f)$ is defined over Q_l and $\langle R, H_c^r(X_f) \rangle_{M(q)} = 1$, we have $m_{Q_l}(\chi) = 1$. Since $\langle H_c^i(X_f), H_c^i(X_f) \rangle_{M(q)} = 0$ if $i \neq j$, the character of the virtual module $W = \sum (-1)^i H_c^i(X_f)$ is rational-valued and each irreducible component of W has a different degree, χ is rational-valued (see below). By [5], (4.4), there is a M(q)-equivariant antisymmetric bilinear form on V. As $Q_l \simeq C$, V may be

^{*)} Dedicated to Professor Shizuo Endo.

regarded as a C[M(q)]-module. Hence, by a theorem of Frobenius-Schur, we have $m_{R}(\chi)=2$. And, by Hasse's sum formula, we have $m_{Q_{k}}(\chi)=2$.

Now let G be a connected, reductive algbraic group, defined over F_q , whose Coxeter graph is of type $(^2E_6)$. Let P be a parabolic subgroup of G, defined over F_q , which has a Levi part L (over F_q) of type $(^2A_5)$. Let ρ be the unique cuspidal unipotent character of L(q) (see [2], 13.7, p. 457). Then, by the lemma above, ρ is rational-valued and $m_Q(\rho) = m_R(\rho) = m_{Q_p}(\rho) = 2$ and $m_{Q_l}(\rho) = 1$ for any prime number $l \neq p$. Let $P \to L$ be the natural map and put $\tilde{\rho} = \rho$ o($P(q) \to L(q)$). Then the character $\tilde{\rho}$ of P(q) has the rationality similar to that of ρ . Let R be a representation of P(q) which affords $\tilde{\rho}$. Then we find that $\operatorname{End}_{G(q)}(\operatorname{Ind}_{P(q)}^{G(q)}(R))$ is isomorphic to the group algebra of the Weyl group W of type (A_1) (cf. [6], Table II, p. 35). Thus, 1 and ε being the irreducible characters of W, we have

$$\tilde{\rho}^{G(q)} = \operatorname{Ind}_{P(q)}^{G(q)}(\tilde{\rho}) = \rho_1 + \rho_2,$$

where ρ_1 (resp. ρ_2) is an irreducible character of G(q) corresponding, for instance, to 1 (resp. to ε).

We first show that ρ_1 and ρ_2 are rational-valued. In fact, let \bar{Q} be an algebraic closure of Q and let σ be any element of $\mathrm{Gal}(\bar{Q}/Q)$. As ρ is rational-valued, $\bar{\rho}^{G(q)}$ is also rational-valued, so that we have:

$$\rho_1 + \rho_2 = \tilde{\rho}^{G(q)} = (\tilde{\rho}^{G(q)})^{\sigma} = \rho_1^{\sigma} + \rho_2^{\sigma}.$$

But as $\rho_1(1) \neq \rho_2(1)$ (see [2], p. 481), we must have $\rho_i^{\sigma} = \rho_i$, i = 1, 2. Thus ρ_1 and ρ_2 are rational-valued.

We next show that, for i=1,2, we have $m_Q(\rho_i)=m_R(\rho_i)=m_{Q_i}(\rho_i)=2$ and $m_{Q_i}(\rho_i)=1$ for any prime number $l\neq p$. If l is any prime number $\neq p$, then $\tilde{\rho}^{G(q)}$ is realizable in Q_l , so that, by a theorem of Schur, we have $m_{Q_l}(\rho_i)=1$ for i=1,2. Suppose that $m_{Q_p}(\rho_i)=1$ (i=1 or 2). Then ρ_i is realizable in Q_p , so that, by Schur's theorem, $2=m_{Q_p}(\tilde{\rho})$ must divide $\langle \tilde{\rho}, \rho_i \mid P(q) \rangle_{P(q)} = \langle \tilde{\rho}^{G(q)}, \rho_i \rangle_{G(q)}=1$, a contradiction. Therefore we must have $m_{Q_p}(\rho_i)=2(i=1,2)$. [We note that, by the Brauer-Speiser theorem, if χ is a rational-valued irreducible character of a finite group, $m_Q(\chi)$ is at most two.] Similarly we have $m_R(\rho_i)=2(i=1,2)$.

Now let G be as above and assume that G is a simply-connected semi-simple group. Let Z be the centre of G. Then, in view of [3], Proposition 7.10, we see that ρ_1 and ρ_2 are trivial on Z(q), so that they may be regarded as characters of $G(q)/Z(q) = {}^2E_6(q^2)$. Thus we get:

Theorem. The simple Steinberg group ${}^2E_6(q^2)$ has (at least) two rational-valued irreducible characters χ_1 , χ_2 such that, for i=1,2, we have $m_Q(\chi_i)=m_R(\chi_i)=m_{Q_p}(\chi_i)=2$ and $m_{Q_l}(\chi_i)=1$ for any prime number $l\neq p$.

As to the rationality of other unipotent characters of G(q) or ${}^2E_6(q^2)$, we see, by a result of C. T. Benson and C. W. Curtis [1], that all the principal series unipotent characters are realizable in Q.

The argument in this note may be applied to the groups of type (^2A_r) . In fact, we see that, for each $n \neq 2$, 4, $PSU(n, q^2)$ has rational-valued irreducible characters χ such that $m_Q(\chi) = m_R(\chi) = m_{Q_0}(\chi) = 2$ and

 $m_{Q_l}(\chi) = 1$ for any prime number $l \neq p$.

References

- [1] C. T. Benson and C. W. Curtis: On the degrees and rationality of certain characters of finite Chevalley groups. Trans. Amer. Math. Soc., 165, 251-273 (1972).
- [2] R. W. Carter: Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. A Wiley-Interscience Publication, John Wiley and Sons (1985).
- [3] P. Deligne and G. Lusztig: Representations of reductive groups over finite fields. Ann. of Math., 103, 103-161 (1976).
- [4] R. Gow: Schur indices of some groups of Lie type. J. Algebra, 42, 102-120 (1976).
- [5] G. Lusztig: Coxeter orbits and eigenspaces of Frobenius. Invent. Math., 38, 101-159 (1976).
- [6] —: Representations of finite Chevalley groups. CBMS Regional Conference Series in Mathematics (A. M. S.), **39** (1977).