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For any algebraic number field k, C (k)will denote the ideal class
group of k. For any abelian group G and an integer m, G" will mean the
subgroup of G consisting of m-th powers of element of G.

The purpose of this note is to prove"

Theorem. Let L be an abelian number field and K a subfield of L of
degree n. Then C(L) contains a subgroup which is isomorphic to C (K) n.

Proof Let /2 be the Hilbert class field of the field L and / be the
Hilbert class field of the field K. By Galois theory, we have the following ex-
act sequence

Gal(/2/L) --, GaI(R/K) Gal(R L/K) 0.
By class field thecry, this gives us the exact sequence

C(L)’ -- C(K) -- Gal(/ fl L/K) --* O.
This implies our Theorem owing to the following Lemma.

Lemma. We have C (if) N/r(C (L)).
Proof. From now on, we will write the occuring class groups additively.

Let x C (K). Since C (Q)= 0, we have that ooa’x--0, where
G Gal (K/Q). Therefore nx nx o a’x (1 a)x. Since
/ fl L is abelian over Q, the group G acts trivially on Gal (R fl L/K).
Therefore the G-homomorphism f maps each (1 a)x to 0 and we see that
f(nx) 0 which, by exactness, implies that nx image C(L) as required.
This completes the proof.

Using this lemma we have clearly that C(L) contains a subgroup iso-
morphic to C(K) n. This completes the proof.

Remark. Our Theorem generalizes the main theorem of [1].
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