# 13. Levi Conditions for Hyperbolic Operators with a Stratified Multiple Variety 

By Enrico Bernardi,*) Antonio Bove,*) and Tatsuo Nishitani**)

(Communicated by Kunihiko Kodaira, m. J. A., March 12, 1992)

1. Introduction and result. Let $P\left(x, D_{x}\right)$ be a differential operator of order $m$, i.e. $P\left(x, D_{x}\right)=P_{m}\left(x, D_{x}\right)+P_{m-1}\left(x, D_{x}\right)+\cdots$, where $P_{j}\left(x, D_{x}\right)$, $j=0, \cdots, m$, denotes the homogeneous part of order $j$ of $P$ (here $D_{x}=$ $(1 / i) \partial / \partial x)$. We assume that $P$ has $C^{\infty}$ (smooth) coefficients in the open subset $\Omega \subset R^{n+1}$, and that $0 \in \Omega$. Consider the principal symbol of $P$, $p_{m}(x, \xi)$, which we shall assume to be a homogeneous polynomial of degree $m$ with real valued smooth coefficients; we say that $P$ is hyperbolic with respect to the direction $\xi_{0}$ if the equation $p_{m}(x, \xi)=0$, where $x=\left(x_{0}, x_{1}, \cdots\right.$, $\left.x_{n}\right), \xi=\left(\xi_{0}, \xi_{1}, \cdots, \xi_{n}\right)$, has only real roots in $\xi_{0}$. It has long been well known that if $P$ is strictly hyperbolic, i.e. if all the above mentioned roots of $p_{m}(x, \xi)=0$ are distinct, then the Cauchy problem

$$
P\left(x, D_{x}\right)=f,\left.\quad \partial_{0}^{j} u\right|_{x_{0}=0}=g_{j}, \quad j=0, \cdots, m-1,
$$

is well posed. Well posedness, roughly speaking, means that there exists a unique distribution solution for any choice of the distributions $f$ and $g_{j}$ 's. On the other hand, if the roots of $p_{m}(x, \xi)$ are not distinct, it is well known that in general we have well posedness only if we assume some conditions on the lower order terms, see e.g. [7] and [9] in the case of double roots, [10] and [11] in the case of roots of higher multiplicity.

When roots of higher multiplicity occur an important object is the localised principal symbol: If $d^{j} p_{m}(\rho)=0, j=0, \cdots, r-1$, and $d^{r} p_{m}(\rho) \neq 0$, define $p_{m, \rho}(\delta z)=\lim _{t \rightarrow 0} t^{-r} p_{m}(\rho+t \delta z)$, where $\delta z \in T_{\rho}\left(T^{*} \Omega\right)$, the tangent space at $\rho$ of $T^{*} \Omega \simeq \Omega \times \boldsymbol{R}_{\xi}^{n+1}$.

In this note we present a result on necessary conditions for the well posedness of the Cauchy problem for $P$. Here is a list of the assumptions we make:
$\left(\mathrm{H}_{1}\right)$ The principal symbol $p_{m}(x, \xi)$ is real and hyperbolic with respect to $\xi_{0}$.
$\left(\mathrm{H}_{2}\right)$ The characteristic roots of $\xi_{0} \mapsto p_{m}\left(x, \xi_{0}, \xi^{\prime}\right)$ have multiplicity of order at most 3 and Char $P=\left\{(x, \xi) \mid p_{m}(x, \xi)=0\right\}=\Sigma_{1} \cup \Sigma_{2} \cup \Sigma_{3}$, where

$$
\begin{aligned}
& \Sigma_{1}=\left\{(x, \xi) \in T^{*} \Omega \mid p_{m}(x, \xi)=0, d p_{m}(x, \xi) \neq 0\right\}, \\
& \Sigma_{2}=\left\{(x, \xi) \in T^{*} \Omega \mid p_{m}(x, \xi)=0, d p_{m}(x, \xi)=0, d^{2} p_{m}(x, \xi) \neq 0\right\}, \\
& \Sigma_{3}=\left\{(x, \xi) \in T^{*} \Omega \mid p_{m}(x, \xi)=0, d p_{m}(x, \xi)=0, d^{2} p_{m}(x, \xi)=0\right\} .
\end{aligned}
$$

Here and in the sequel $x^{\prime}=\left(x_{1}, \cdots, x_{n}\right)$ and analogously for $\xi^{\prime}$.

[^0]$\left(\mathrm{H}_{3}\right)$ Let $\rho \in \Sigma_{3}$; then $p_{m, \rho}$, the localization of $p_{m}(x, \xi)$ at $\rho$ defined, above, is a third order polynomial hyperbolic with respect to $\left(0, e_{0}\right)=$ $(0, \cdots, 0,1,0, \cdots, 0)$ satisfying the following conditions:
(i) $p_{m, \rho}(\delta z)=L(\delta z) Q_{2}(\delta z)$, where $L(\delta z)=\delta \xi_{0}-l_{1}\left(\delta x, \delta \xi^{\prime}\right), l_{1}$ being a real linear form in the variables ( $\delta x, \delta \xi^{\prime}$ ).
(ii) $Q_{2}(\delta z)$ is a real hyperbolic quadratic form such that
(a) $\operatorname{ker} F_{Q_{2}}^{2} \cap \operatorname{Im} F_{Q_{2}}^{2}=\{0\}$, where $F_{Q_{2}}(\rho)=\left(d_{(x, \xi)} H_{Q_{2}}\right)(\rho)$ and $H_{Q_{2}}(x, \xi)$ $=\left(d_{\xi} Q_{2},-d_{x} Q_{2}\right)(x, \xi)$ is the Hamilton vector field of $Q_{2}$.
(b) $\left.d x \wedge d \xi\right|_{\text {Im } F_{Q_{2}}}$ has positive rank.
(c) $\operatorname{sp}\left(F_{Q_{2}}\right) \subset i \boldsymbol{R}$ (this condition can be rephrased saying that $Q_{2}$ is non effectively hyperbolic).
$\left(\mathrm{H}_{4}\right)$ For every $\rho \in \Sigma_{3}$ define the lineality of $p_{m}, \Lambda_{\rho}\left(p_{m}\right)=\{\delta z \mid \delta z \in$ $\left.\operatorname{ker} F_{Q_{2}}(\rho), L(\delta z)=0\right\}$. Then $H_{L}(\rho) \in \Lambda_{\rho}\left(p_{m}\right)$.

To state the theorem we need some notation; if $P$ is a hyperbolic polynomial and $\rho \in \operatorname{Char} P$, denote by $\Gamma_{p_{m}, \rho}=$ the connected component of $\left\{\delta z \in T_{\rho}\left(T^{*} \Omega\right) \mid p_{m, \rho}(\delta z) \neq 0\right\}$ containing $\left(0, e_{0}\right)$, and by $\Gamma_{p_{m}, \rho}^{\sigma}=\{\delta z=(\delta x, \delta \xi) \in$ $\left.T_{\rho}\left(T^{*} \Omega\right) \mid\langle\delta \xi, \delta y\rangle-\langle\delta x, \delta \eta\rangle=d \xi \wedge d x(\delta x, \delta \xi ; \delta y, \delta \eta) \geq 0, \forall(\delta y, \delta \eta) \in \Gamma_{p_{m}, \rho}\right\}$ its symplectic polar. Furthermore we shall denote by $p^{s}$ the subprincipal symbol of $P$ (see e.g. [8]) defined as $p^{s}(x, \xi)=p_{m-1}(x, \xi)+(i / 2) \sum_{j=0}^{n} \partial_{x_{j \xi j}}^{2} p_{m}(x, \xi)$ and by $\operatorname{Tr}^{+} F_{Q_{2}}=\sum \mu_{j}$, where $i \mu_{j}$ are the eigenvalues of $F_{Q_{2}}$ on the positive imaginary axis, repeated according to their multiplicities.

We can now state our result:
Theorem 1. Let $\Omega_{t}=\left\{x \in \Omega \mid x_{0} \leq t\right\}$. Assume that the Cauchy problem for $P$ is well posed in $\Omega_{t}, t$ small, and let $\rho \in \Sigma_{3}$. Assuming $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$, the following conditions are necessary:
(L1) ${ }_{l}$

$$
p^{s}(\rho)=0
$$

(L2)

$$
\operatorname{Im} H_{p^{s}}(\rho)=0,
$$

$$
\operatorname{Tr}^{+} F_{Q_{2}} H_{L} \pm \operatorname{Re} H_{p^{s}}(\rho) \in \Gamma_{p_{m}, \rho}^{o}
$$

Assumption $\left(\mathrm{H}_{4}\right)_{\rho}$ is more general than the assumptions made in [3]; in the present case the localised polynomial need not be "strictly" hyperbolic with respect to $\left(0, e_{0}\right)$; in fact the relevant case we are interested in is the case when $H_{L}(\rho) \in \Lambda_{\rho}\left(p_{m}\right) \backslash \Gamma_{Q_{2}}^{\sigma}$, which is not covered in [3]. We would also like to point out that both assumptions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ and the conditions on the lower order terms in (L1), (L2) are invariant under canonical transformations.
2. Examples. Here are two examples of operators satisfying hypotheses $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$.
(a) $\quad P\left(x, D_{x}\right)=\left(D_{0}-l x_{3} D_{n}\right)\left(-D_{0}^{2}+x_{1}^{2} D_{n}^{2}+x_{2}^{2} D_{n}^{2}+D_{2}^{2}\right)$

$$
+a_{0} D_{0} D_{n}+a_{2} D_{2} D_{n}+\left(b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}\right) D_{n}^{2}, \quad|l|>1 .
$$

Here $p^{s}(x, \xi)=a_{0} \xi_{0} \xi_{n}+a_{2} \xi_{2} \xi_{n}+\left(b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}\right) \xi_{n}^{2}$. Let $\rho=\left(\bar{x}_{0}, 0,0,0, \bar{x}_{4}\right.$, $\cdots, \bar{x}_{n} ; 0, \bar{\xi}_{1}, 0, \bar{\xi}_{3}, \cdots, \bar{\xi}_{n-1}, 1$ ), so that (L1) is satisfied; condition (L2) with the $+\operatorname{sign}$ means that $\operatorname{Im} a_{j}=0, j=0,2, \operatorname{Im} b_{j}=0, j=1,2,3$ and

$$
-\frac{b_{3}}{l}+1 \geq 0, \quad a_{0}+\frac{b_{3}}{l} \geq \sqrt{a_{2}^{2}+b_{1}^{2}+b_{2}^{2}} .
$$

(b)

$$
\begin{aligned}
P\left(x, D_{x}\right)= & \left(D_{0}-l D_{1}\right)\left(-D_{0}^{2}+D_{1}^{2}+x_{2}^{2} D_{n}^{2}+D_{2}^{2}\right) \\
& +\left(a_{0} D_{0}+a_{1} D_{1}+a_{2} D_{2}\right) D_{n}+b_{2} x_{2} D_{n}^{2}, \quad|l|>1 .
\end{aligned}
$$

In this case $p^{s}(x, \xi)=\left(a_{0} \xi_{0}+a_{1} \xi_{1}+a_{2} \xi_{2}+b_{2} x_{2} \xi_{n}\right) \xi_{n}$. Let $\rho=\left(\bar{x}_{0}, \bar{x}_{1}, 0, \bar{x}_{3}, \cdots\right.$, $\bar{x}_{n} ; 0,0,0, \bar{\xi}_{3}, \cdots, \bar{\xi}_{n-1}, 1$ ), so that (L1) is satisfied, condition (L2) with the + sign means that $\operatorname{Im} a_{j}=0, j=0,1,2, \operatorname{Im} b_{2}=0$ and either

$$
a_{0}+1 \geq \sqrt{\left(a_{1}-l\right)^{2}+a_{2}^{2}+b_{2}^{2}}
$$

or

$$
\begin{array}{ll}
a_{0}+1<\sqrt{\left(a_{1}-l\right)^{2}+a_{2}^{2}+b_{2}^{2}}, & l^{2}-1 \geq a_{0}+a_{1} l, \\
\left(a_{0} l+a_{1}\right)^{2} \geq\left(l^{2}-1\right)\left(a_{2}^{2}+b_{2}^{2}\right), & l\left(a_{0} l+a_{1}\right) \geq 0 .
\end{array}
$$

3. Proof of the theorem. The proof of the theorem is done in two parts according to the mutual positions of $H_{L}$ and $\Gamma_{Q_{2}}^{o}$; actually we distinguish two cases: i) $H_{L} \notin \operatorname{Im} F_{Q_{2}}$ and ii) $H_{L} \in \operatorname{Im} F_{Q_{2}} \backslash \Gamma_{Q_{2}}^{o} . \quad$ A model of these two cases is given by Examples (a) and (b) respectively.

Case i) has the following geometrical consequence:
Proposition 2. If $H_{L} \notin \operatorname{Im} F_{Q_{2}}$ then

$$
\partial \Gamma_{Q_{2}}=\Lambda\left(Q_{2}\right)+\left(\partial \Gamma_{Q_{2}} \cap \Lambda(L)\right)
$$

The above equality expresses the fact that the double characteristic set $\tilde{\Sigma}_{2}$ of the localised operator is "large enough" to generate the hyperbolicity cone $\Gamma_{Q_{2}}$; this is made more precise by the following

Proposition 3. For every $z \in \Gamma_{Q_{2}}$ there exists
$v_{1} \in\left\{(\delta x, \delta \xi) \in T_{\rho}\left(T^{*} \Omega\right) \mid Q_{2, \rho}(\delta x, \delta \xi)=0, d Q_{2, \rho}(\delta x, \delta \xi)=0, L(\delta x, \delta \xi) \neq 0\right\}$, and
$v_{2} \in\left\{(\delta x, \delta \xi) \in T_{\rho}\left(T^{*} \Omega\right) \mid Q_{2, \rho}(\delta x, \delta \xi)=0, d Q_{2, \rho}(\delta x, \delta \xi) \neq 0, L(\delta x, \delta \xi)=0, \delta \xi_{0}>0\right\}$, such that

$$
z=\lambda_{1} v_{1}+\lambda_{2} v_{2},
$$

where $\lambda_{i} \geq 0, i=1,2$.
The proof in case i) is accomplished by constructing an asymptotic solution whose phase presents a double scaling: one of these scaling allows us to microlocalise near the triple point $\rho$ under consideration, whereas the other can be thought of as a kind of second microlocalisation along the double manifold of $p_{m, \rho}$.

Let us now turn to case ii). Here, in contrast to the preceding situation, the double characteristic set of $p_{m, \rho}$ is too small to generate the hyperbolicity cone $\Gamma_{Q_{2}}$. Therefore Propositions 2 and 3 are no longer true and the proof of the theorem can rely only in part on $\tilde{\Sigma}_{2}$; further analysis of the triple characteristic set, refining the technique developed in [3], must be used in order to get the full Levi conditions (L1) and (L2).

The details will appear elsewhere (see [5]).

## References

[1] M. F. Atiyah, R. Bott and L. Gårding: Lacunas for hyperbolic differential operators with constant coefficients. I. Acta Math., 124, 109-189 (1970).
[2] E. Bernardi: Propagation of singularities for hyperbolic operators with multiple involutive characteristics. Osaka J. Math., 25, 19-31 (1988).
[3] E. Bernardi and A. Bove: Necessary and sufficient condition for the well-posedness of the Cauchy problem for a class of hyperbolic operators with triple characteristics. J. Analyse Math., 54, 21-59 (1990).
[4] --: Geometric results for a class of hyperbolic operators with double characteristics. Comm. in P.D.E., 13 (1), 61-86 (1988).
[5] E. Bernardi, A. Bove, and T. Nishitani: Well posedness of the Cauchy problem for a class of hyperbolic operators with a stratified multiple variety : necessary conditions (1991) (preprint).
[6] J. J. Duistermaat: Fourier Integral Operators. Courant Institute of Mathematical Sciences. New York (1973).
[7] L. Hörmander: The Cauchy problem for differential equation with double characteristics. J. Analyse Math., 32, 118-196 (1977).
[ 8 ] ——: The Analysis of Linear Partial Differential Operators. III. Springer-Verlag, Berlin (1985).
[9] V. Ja. Ivrii: The well-posedness of the Cauchy problem for non-strictly hyperbolic operators. III. The Energy Integral. Trans. Moscow Math. Soc., 34, 149-168 (1978).
[10] V. Ja. Ivrii and V. M. Petkov: Necessary conditions for the correctness of the Cauchy problem for non strictly hyperbolic equations. Russian Math. Surveys, 29 (5), 1-70 (1974).
[11] V. Ja. Ivrii and O. V. Zaitseva: On the well posedness of the Cauchy problem for certain hyperbolic operators with characteristics of high variable multiplicity. ibid., 37, no. 3, 225-226 (1982).
[12] T. Nishitani: Hyperbolic operators with symplectic multiple characteristics. J. Math. Kyoto Univ., 29, 405-447 (1989).
[13] S. Wakabayashi: Singularities of solutions of the Cauchy problem for symmetric hyperbolic systems. Comm. in P.D.E., 9, 1147-1177 (1984).


[^0]:    *) Dipartimento di Matematica, Università di Bologna, Italia.
    **) College of General Education, Osaka University, Japan.

