13. Levi Conditions for Hyperbolic Operators with a Stratified Multiple Variety

By Enrico Bernardi,*' Antonio Bove,*' and Tatsuo Nishitani**'

(Communicated by Kunihiko KODAIRA, M. J. A., March 12, 1992)

1. Introduction and result. Let $P(x, D_x)$ be a differential operator of order m, i.e. $P(x, D_x) = P_m(x, D_x) + P_{m-1}(x, D_x) + \cdots$, where $P_j(x, D_x)$, $j=0, \cdots, m$, denotes the homogeneous part of order j of P (here $D_x = (1/i)\partial/\partial x$). We assume that P has C^{∞} (smooth) coefficients in the open subset $\Omega \subset \mathbb{R}^{n+1}$, and that $0 \in \Omega$. Consider the principal symbol of P, $p_m(x, \xi)$, which we shall assume to be a homogeneous polynomial of degree m with real valued smooth coefficients; we say that P is hyperbolic with respect to the direction ξ_0 if the equation $p_m(x, \xi) = 0$, where $x = (x_0, x_1, \cdots, x_n)$, $\xi = (\xi_0, \xi_1, \cdots, \xi_n)$, has only real roots in ξ_0 . It has long been well known that if P is strictly hyperbolic, i.e. if all the above mentioned roots of $p_m(x, \xi) = 0$ are distinct, then the Cauchy problem

 $P(x, D_x) = f$, $\partial_0^j u|_{x_0=0} = g_j$, $j=0, \dots, m-1$, is well posed. Well posedness, roughly speaking, means that there exists a unique distribution solution for any choice of the distributions f and g_j 's. On the other hand, if the roots of $p_m(x, \xi)$ are not distinct, it is well known that in general we have well posedness only if we assume some conditions on the lower order terms, see e.g. [7] and [9] in the case of double roots, [10] and [11] in the case of roots of higher multiplicity.

When roots of higher multiplicity occur an important object is the localised principal symbol: If $d^{j}p_{m}(\rho)=0$, $j=0, \dots, r-1$, and $d^{r}p_{m}(\rho)\neq 0$, define $p_{m,\rho}(\delta z)=\lim_{t\to 0}t^{-r}p_{m}(\rho+t\delta z)$, where $\delta z\in T_{\rho}(T^{*}\Omega)$, the tangent space at ρ of $T^{*}\Omega\simeq\Omega\times \mathbf{R}_{\varepsilon}^{n+1}$.

In this note we present a result on necessary conditions for the well posedness of the Cauchy problem for P. Here is a list of the assumptions we make:

(H₁) The principal symbol $p_m(x, \xi)$ is real and hyperbolic with respect to ξ_0 .

(H₂) The characteristic roots of $\xi_0 \mapsto p_m(x, \xi_0, \xi')$ have multiplicity of order at most 3 and Char $P = \{(x, \xi) | p_m(x, \xi) = 0\} = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$, where

 $\Sigma_1 = \{ (x, \xi) \in T^* \Omega \mid p_m(x, \xi) = 0, \ dp_m(x, \xi) \neq 0 \},\$

 $\Sigma_2 = \{ (x, \xi) \in T^* \Omega \mid p_m(x, \xi) = 0, dp_m(x, \xi) = 0, d^2 p_m(x, \xi) \neq 0 \},\$

 $\Sigma_3 = \{ (x,\xi) \in T^* \Omega \mid p_m(x,\xi) = 0, \ dp_m(x,\xi) = 0, \ d^2 p_m(x,\xi) = 0 \}.$

Here and in the sequel $x' = (x_1, \dots, x_n)$ and analogously for ξ' .

^{*)} Dipartimento di Matematica, Università di Bologna, Italia.

^{**)} College of General Education, Osaka University, Japan.

(H₃) Let $\rho \in \Sigma_3$; then $p_{m,\rho}$, the localization of $p_m(x,\xi)$ at ρ defined, above, is a third order polynomial hyperbolic with respect to $(0, e_0) = (0, \dots, 0, 1, 0, \dots, 0)$ satisfying the following conditions:

(i) $p_{m,\rho}(\delta z) = L(\delta z)Q_2(\delta z)$, where $L(\delta z) = \delta \xi_0 - l_1(\delta x, \delta \xi')$, l_1 being a real linear form in the variables $(\delta x, \delta \xi')$.

(ii) $Q_2(\delta z)$ is a real hyperbolic quadratic form such that

(a) ker $F_{Q_2}^2 \cap \text{Im} F_{Q_2}^2 = \{0\}$, where $F_{Q_2}(\rho) = (d_{(x,\xi)}H_{Q_2})(\rho)$ and $H_{Q_2}(x,\xi) = (d_{\xi}Q_2, -d_xQ_2)(x,\xi)$ is the Hamilton vector field of Q_2 .

(b) $dx \wedge d\xi|_{\operatorname{Im} F_{Q_2}}$ has positive rank.

(c) sp $(F_{Q_2}) \subset i\mathbf{R}$ (this condition can be rephrased saying that Q_2 is non effectively hyperbolic).

(H₄) For every $\rho \in \Sigma_3$ define the lineality of p_m , $\Lambda_{\rho}(p_m) = \{\delta z \mid \delta z \in \ker F_{Q_2}(\rho), L(\delta z) = 0\}$. Then $H_L(\rho) \in \Lambda_{\rho}(p_m)$.

To state the theorem we need some notation; if P is a hyperbolic polynomial and $\rho \in \text{Char } P$, denote by $\Gamma_{p_m,\rho} = \text{the connected component of}$ $\{\delta z \in T_{\rho}(T^*\Omega) | p_{m,\rho}(\delta z) \neq 0\}$ containing $(0, e_0)$, and by $\Gamma_{p_m,\rho}^{\sigma} = \{\delta z = (\delta x, \delta \xi) \in T_{\rho}(T^*\Omega) | \langle \delta \xi, \delta y \rangle - \langle \delta x, \delta \eta \rangle = d\xi \wedge dx (\delta x, \delta \xi; \delta y, \delta \eta) \geq 0, \forall (\delta y, \delta \eta) \in \Gamma_{p_m,\rho}\}$ its symplectic polar. Furthermore we shall denote by p^s the subprincipal symbol of P (see e.g. [8]) defined as $p^s(x, \xi) = p_{m-1}(x, \xi) + (i/2) \sum_{j=0}^{n} \partial_{x_j \xi_j}^2 p_m(x, \xi)$ and by $\text{Tr} \, {}^*F_{q_2} = \sum \mu_j$, where $i\mu_j$ are the eigenvalues of F_{q_2} on the positive imaginary axis, repeated according to their multiplicities.

We can now state our result:

Theorem 1. Let $\Omega_t = \{x \in \Omega \mid x_0 \leq t\}$. Assume that the Cauchy problem for P is well posed in Ω_t , t small, and let $\rho \in \Sigma_3$. Assuming (H₁)-(H₄), the following conditions are necessary:

 $\begin{array}{c} (L1)_{\iota} & p^{s}(\rho) = 0. \\ (L2)_{\iota} & \operatorname{Im} H_{p^{s}}(\rho) = 0, \\ \mathrm{Tr} \, {}^{*}F_{q_{2}}H_{L} \pm \operatorname{Re} H_{p^{s}}(\rho) \in \Gamma_{p_{m},\rho}^{\sigma}. \end{array}$

Assumption $(H_4)_{\rho}$ is more general than the assumptions made in [3]; in the present case the localised polynomial need not be "strictly" hyperbolic with respect to $(0, e_0)$; in fact the relevant case we are interested in is the case when $H_L(\rho) \in \Lambda_{\rho}(p_m) \setminus \Gamma_{Q_2}^{\sigma}$, which is not covered in [3]. We would also like to point out that both assumptions $(H_1)-(H_4)$ and the conditions on the lower order terms in (L1), (L2) are invariant under canonical transformations.

2. Examples. Here are two examples of operators satisfying hypotheses $(H_1)-(H_4)$.

(a)
$$P(x, D_x) = (D_0 - lx_3D_n)(-D_0^2 + x_1^2D_n^2 + x_2^2D_n^2 + D_2^2) + a_0D_0D_n + a_2D_2D_n + (b_1x_1 + b_2x_2 + b_3x_3)D_n^2, \quad |l| > 1.$$

Here $p^s(x, \xi) = a_0\xi_0\xi_n + a_2\xi_2\xi_n + (b_1x_1 + b_2x_2 + b_3x_3)\xi_n^2.$ Let $\rho = (\bar{x}_0, 0, 0, 0, \bar{x}_4, \dots, \bar{x}_n; 0, \bar{\xi}_1, 0, \bar{\xi}_3, \dots, \bar{\xi}_{n-1}, 1)$, so that (L1) is satisfied; condition (L2) with the + sign means that $\operatorname{Im} a_4 = 0, j = 0, 2, \operatorname{Im} b_4 = 0, j = 1, 2, 3$ and

$$-rac{b_3}{l}+1\geq 0, \qquad a_0+rac{b_3}{l}\geq \sqrt{a_2^2+b_1^2+b_2^2}.$$

Conditions for Hyperbolic Operators

(b)
$$P(x, D_x) = (D_0 - lD_1)(-D_0^2 + D_1^2 + x_2^2 D_n^2 + D_2^2) + (a_0 D_0 + a_1 D_1 + a_2 D_2) D_n + b_2 x_2 D_n^2, \qquad |l| > 1.$$

In this case $p^s(x,\xi) = (a_0\xi_0 + a_1\xi_1 + a_2\xi_2 + b_2x_2\xi_n)\xi_n$. Let $\rho = (\bar{x}_0, \bar{x}_1, 0, \bar{x}_3, \cdots, \bar{x}_n; 0, 0, 0, \bar{\xi}_3, \cdots, \bar{\xi}_{n-1}, 1)$, so that (L1) is satisfied, condition (L2) with the + sign means that Im $a_j = 0$, j = 0, 1, 2, Im $b_2 = 0$ and either

$$a_0 + 1 \ge \sqrt{(a_1 - l)^2 + a_2^2 + b_2^2}$$

or

$$\begin{array}{ll} a_0\!+\!1\!\!<\!\!\sqrt{(a_1\!-\!l)^2\!+\!a_2^2\!+\!b_2^2}, & l^2\!-\!1\!\!\geq\!\!a_0\!+\!a_1l,\\ (a_0l\!+\!a_1)^2\!\!\geq\!\!(l^2\!-\!1)(a_2^2\!+\!b_2^2), & l(a_0l\!+\!a_1)\!\geq\!0. \end{array}$$

3. Proof of the theorem. The proof of the theorem is done in two parts according to the mutual positions of H_L and $\Gamma_{q_2}^{\sigma}$; actually we distinguish two cases: i) $H_L \notin \operatorname{Im} F_{q_2}$ and ii) $H_L \in \operatorname{Im} F_{q_2} \setminus \Gamma_{q_2}^{\sigma}$. A model of these two cases is given by Examples (a) and (b) respectively.

Case i) has the following geometrical consequence:

Proposition 2. If $H_L \notin \operatorname{Im} F_{Q_2}$ then

 $\partial \Gamma_{Q_2} = \Lambda(Q_2) + (\partial \Gamma_{Q_2} \cap \Lambda(L)).$

The above equality expresses the fact that the double characteristic set $\tilde{\Sigma}_2$ of the localised operator is "large enough" to generate the hyperbolicity cone Γ_{Q_2} ; this is made more precise by the following

Proposition 3. For every $z \in \Gamma_{Q_2}$ there exists

 $v_1 \in \{ (\delta x, \delta \xi) \in T_{\rho}(T^* \Omega) | Q_{2,\rho}(\delta x, \delta \xi) = 0, \ dQ_{2,\rho}(\delta x, \delta \xi) = 0, \ L(\delta x, \delta \xi) \neq 0 \},$ and

 $v_{2} \in \{(\delta x, \delta \xi) \in T_{\rho}(T^{*}\Omega) \mid Q_{2,\rho}(\delta x, \delta \xi) = 0, \ dQ_{2,\rho}(\delta x, \delta \xi) \neq 0, \ L(\delta x, \delta \xi) = 0, \ \delta \xi_{0} > 0\},$ such that

$$z = \lambda_1 v_1 + \lambda_2 v_2,$$

where $\lambda_i \geq 0$, i=1, 2.

The proof in case i) is accomplished by constructing an asymptotic solution whose phase presents a double scaling: one of these scaling allows us to microlocalise near the triple point ρ under consideration, whereas the other can be thought of as a kind of second microlocalisation along the double manifold of $p_{m,\rho}$.

Let us now turn to case ii). Here, in contrast to the preceding situation, the double characteristic set of $p_{m,\rho}$ is too small to generate the hyperbolicity cone Γ_{Q_2} . Therefore Propositions 2 and 3 are no longer true and the proof of the theorem can rely only in part on $\tilde{\Sigma}_2$; further analysis of the triple characteristic set, refining the technique developed in [3], must be used in order to get the full Levi conditions (L1) and (L2).

The details will appear elsewhere (see [5]).

References

- M. F. Atiyah, R. Bott and L. Gårding: Lacunas for hyperbolic differential operators with constant coefficients. I. Acta Math., 124, 109-189 (1970).
- [2] E. Bernardi: Propagation of singularities for hyperbolic operators with multiple involutive characteristics. Osaka J. Math., 25, 19-31 (1988).

No. 3]

- [3] E. Bernardi and A. Bove: Necessary and sufficient condition for the well-posedness of the Cauchy problem for a class of hyperbolic operators with triple characteristics. J. Analyse Math., 54, 21-59 (1990).
- [4] ——: Geometric results for a class of hyperbolic operators with double characteristics. Comm. in P.D.E., 13 (1), 61-86 (1988).
- [5] E. Bernardi, A. Bove, and T. Nishitani: Well posedness of the Cauchy problem for a class of hyperbolic operators with a stratified multiple variety: necessary conditions (1991) (preprint).
- [6] J. J. Duistermaat: Fourier Integral Operators. Courant Institute of Mathematical Sciences. New York (1973).
- [7] L. Hörmander: The Cauchy problem for differential equation with double characteristics. J. Analyse Math., **32**, 118-196 (1977).
- [8] ——: The Analysis of Linear Partial Differential Operators. III. Springer-Verlag, Berlin (1985).
- [9] V. Ja. Ivrii: The well-posedness of the Cauchy problem for non-strictly hyperbolic operators. III. The Energy Integral. Trans. Moscow Math. Soc., 34, 149-168 (1978).
- [10] V. Ja. Ivrii and V. M. Petkov: Necessary conditions for the correctness of the Cauchy problem for non strictly hyperbolic equations. Russian Math. Surveys, 29 (5), 1-70 (1974).
- [11] V. Ja. Ivrii and O. V. Zaitseva: On the well posedness of the Cauchy problem for certain hyperbolic operators with characteristics of high variable multiplicity. ibid., 37, no. 3, 225-226 (1982).
- T. Nishitani: Hyperbolic operators with symplectic multiple characteristics. J. Math. Kyoto Univ., 29, 405-447 (1989).
- [13] S. Wakabayashi: Singularities of solutions of the Cauchy problem for symmetric hyperbolic systems. Comm. in P.D.E., 9, 1147–1177 (1984).