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1. Introduction and result. In [8] Miles derived the following system
(SP). It describes the motion of a lightly damped spherical pendulum, which
is forced to oscillate horizontally in the neighborhood of resonance:
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where @ > 0 and v € R represent a damping coefficient and a frequency
offset, respectively. Here (p,(¢), q,(8), p,(t), q,(¢t)) denotes slowly varying
amplitudes of degenerate modes 1 and 2 in a four dimensional phase space,
and we have set E = E(t) := p,(1)> + q,(t)" + p,(1)> + ¢,()>, M = M (t)
= (D) g, () — p(D) g, (8).

The aim of this paper is to estimate an upper bound for the dimension
of X analytically. Basically we make use of the Kaplan-Yorke formula. This
formula connects the upper bound with the Lyapunov exponents. This was
conjectured by Kaplan and Yorke [7] and proved by Constantin and Foias
[1]. In Eden, Foias and Temam [4], this enables to estimate the dimension of a
global attractor for the Lorenz system. (SP) consists of four equations
unlike the Lorenz system. We therefore adopt the technique used in Ishimura
and Nakamura [6].

Now we state our main result.

Theorem. Let X be the maximal compact invariant set of (SP). Let dimy
denote the Hausdorff dimension. For any v € R, we have the following :

@) 10 < a® <L then

3
_ 3
dimye(X) <3+ S+ 1
a +1
o1 3o 9
(ii) If3 <a < 16’ then
— 16a’ + 9

dimy (X) < 2 + —2
8a’ + 1
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(iii) If 15 <a' <1, then
M
8a°—1

(iv) Ifa’ > 1, then X is a linearly stable invariant set.

Remark that Lemma 2.4 enables us to obtain this above X in a general
theory of dynamical systems. (For example we refer to Temam [11]) In a
forthcoming paper [5], we shall study a more general system analytically and
numerically.

2. Sketch of the proof. We first recall some notations and known re-
sults concerning the Lyapunov exponent and the Hausdorff dimension. For
the proof and other properties, we refer to texts of Eden, Foias and Temam
[4], Constantin and Foias [2] and Ladyzhenskaya [8].

Let {S(®)},>, be a C°-semigroup of injective operators acting on a
separable Hilbert space H. We assume that there exists a compact set X
such that S(#)X = X for all ¢+ = 0. For all #, € X we assume that there ex-
ists a compact linear oprator S’(¢, #,) on H satis{ying

I Stu, — S u, — S, u) (u, — up) | < CW)olll u, — u, ),
for some nondecreasing function C(#).
We define g, (#,)’s and g,’s as follows:

dimye(X) <1 +

1 N
ey +pt,+ -+ py) (up) *=limsup s log  sup | A S'(t, u) vy,

Ut AN, vl =1 =1

Z

ty + g, + oo 4 py i = lim sup supltlog sup | A S'(t, up)vy .

too upEX AN, vl =<1 #=1
Here A means the exterior product. Remark that g,’s are called global
Lyapunov exponents and g;(#%,)’s local Lyapunov exponents.
We next recall the definition of the Hausdorfl dimension: Let X be a
compact subset of H. We set

. . k d k
. (X) = inf {§ rlir,<e XS UL B, ke 2.

Here B, denotes the ball with radius 7;. #,.(X) is a nonincreasing
function of €. So we can define

pa(X) 1= supﬂ“(X) = hm Kae(X).

The Hausdorff dimension dlm.?f is then glven by
dimy := inf{d > 0; ¢, (X) = 0}.

Now we present the Kaplan-Yorke formura, which will be the main in-
gredient of the proof.

Theorem 2.1 (Kaplan-Yorke formula). Let N be the first integer such
that

(g tppt - oy + pn) () <0
for all uy € X. Then we have
wtp,+ -+ py) (uo)}
dime () < sup (N + K, T
Corollary 2.2 (Constantin, Foias and Temam [3; Theorem 3.3]). Suppose
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Uy, + o+ puy + iy < 0, Then we have
dimy(X) < N+ a0t oy
Unr
We next state several lemmas needed for a proof of our main theorem.

At u, =" (9, ¢4y D5 @) € R* the matrix L for the linearized system of (SP)
is given by

L= (L,
where

Li=—a—2pa—3p0, L.o=-(v+E)-Lg+3p
L= %pqu - %plqz, L,=- ;ll-qlqz - %1)1192,
Li=(+5)+3r-32¢ L.=-a+ira+3ra

Ly = %Mz - %qlqz, Ly = — %quz + %pqu,

Lo = 2 002 — 3 0200 Lu=— 50— 5 bibs

Ly = —a—%quz—%plql, Ly =— (v+%) —%qi+%pf,
L,= -};Mz + —f;qlqz, Ly=— %qul + %quz,

E 1 3 1 3
L,= <”+§'> +Z‘p§_Z‘I?» L,= _a+zpzqz+zplql-
Let S(#) denote the solution operator for (SP); ie. S(H)u, = u(t) for
the initial value %, € R*. We consider the solution v,(t) = S’(¢, o) Vg,
(1 = 1,2,3,4) of the eqation

dv

—t+ = Lv,,
2.1 [ dt !

v,(0) = vy,.

Invoking Lemma 3.5 in Constantin and Foias [2] for our situation, we
get the following equation :

(2.2) %|vl/\vz/\v3/\v4|2=2(trL)Ivl/\vz/\vs/\v4|2.
From (2.2) and the definition of the Lyapunov exponent, we have
. ﬂ1+ﬂ2+#3+ﬂ4=—“1{a<0-
Let {e;};_, denote the standard basis for R". And we set
4 ;
(2.3) v,() = Zvi(t)e, (=1,2,3,4).
=1

Then we have the following.
Lemma 2.3. Suppose that each v; solves the equation (2.1), then we have

(2.4) Lo Ao A< 2(=3a+ E) o, A v, Aoyl

(2.5) %Ivl/\02|2$2<—2a+%E)lvl/\vzlz,
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(2.6) L1 P <2(—a+E) oyl

Now we shall state the asymptotic behavior of a solution of (SP). Any
solution of (SP) has the following property :

Lemma 2.4. Let (0,(t), q,(8), p,(t), q,(8)) denote any solution of (SP) .
Then for any € > 0, there exists t, = t,(¢) > 0 such that for any t > ¢,

IE®| <L+
a
Especially suppose that (0,(t), q,(), p.(1), ¢,(t)) € X, then we have
IE® <L foramyt>o0.
a

Here X is a compact global attractor.

Now we can prove our main theorem. It follows from Lemmas 2.3, 2.4
and the definition of the Lyapunov exponent that for each Lyapunov expo-
nent g; of X, we have the following:

1
(2.7) u1+u2+/«¢sé—3a+;;,
(2.8) ot <~ 2a+ 92’
8a
(2.9) bm<—a+-L
a
By Corollary 2.2 and (2.7)-(2.9), we obtain our theorem. Indeed, sup-
pose t; + t, + pt; < M for some M € R. When M > 0, then | g, | = — g,

=y, + p, + y; + 4. Invoking Kaplan-Yorke formula, we have

. u, +u, +u M
dlmye(X)S3+—L—|—ﬁi—|——lS3+—————‘4a+M.

When M < 0, we have g, + p, + ¢, < M < 0. Then we can go to the next
step. Here suppose g, + ¢, < N for some N € R. When N = 0,
. u, + < N
dlmgf(X) S2+W_2+———_—"M+N'
When N < 0, we have g, + ¢, < N < 0. Then we can go ahead again. Here
suppose ¢, < K for some K € R. When K = 0,

. K
dimy(X) <1 +————_N+K.
When K < 0, we have g, < 0. X is therefore linearly stable.
By (2.7)-(2.9) we can choose M := — 3a + —l;, N:=—2a+ 892'
o o
and K := —a + % to obtain our theorem.
a
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