40. Analytic Zariski Decomposition

By Hajime TSUJI

Department of Mathematics, Tokyo Institute of Technology (Communicated by Kunihiko KODAIRA, M. J. A., Sept. 14, 1992)

1. Introduction. Let X be a projective variety and let D be a Cartier divisor on X. The following problem is fundamental in algebraic geometry.

Problem 1. Study the linear system D for $\nu \geq 1$.

To this problem, there is a rather well developed theory in the case of dim $X = 1$. In the case of dim $X = 2$, in early 60-th, O. Zariski reduced this problem to the case that D is nef($=$ numerically semipositive) by using his famous Zariski decomposition ([4]).

Recently Fujita, Kawamata etc. generalized the concept of Zariski decompositions to the case of dim $X \geq 3$ ([1, 2]). The definition is as follows.

Definition 1. Let X be a projective variety and let D be an \mathbf{R} -Cartier divisor on X . The expression

 $D = P + N(P, N \in Div(X) \otimes R)$

is called a Zariski decomposition of D , if the following conditions are satisfied.

- 1. P is nef,
- 2. N is effective,

3. $H^0(X, \mathcal{O}_X([\nu P])) \simeq H^0(X, \mathcal{O}_X([\nu D]))$ holds for all $\nu \in \mathbb{Z}_{\geq 0}$ where []'s denote the integral parts of the divisors.

Although many useful applications of this decomposition have been known $([1, 2, 3])$, as for the existence, very little has been known. There is the following (rather optimistic) conjecture.

Conjecture 1. Let X be a normal projective variety and let D be a pseudoeffective **R**-Cartier divisor on X. Then there exists a modification $f: Y \rightarrow X$ such that $f^* D$ admits a Zariski decomposition.

In this paper, I would like to announce a "weak solution" to this conjecture. Details will be published elsewhere. In this paper, all algebraic varieties are defined over C.

2. Statement of the results. Definition 2. Let X be a normal projective variety and let D be a R -Cartier divisor on X . D is called big if

 $\lim_{\nu \to +\infty} \frac{\log \dim H^0(X, \mathcal{O}_X([\nu D]))}{\log \nu} = \dim X$

holds. D is called pseudoeffective, if for any ample divisor H, $D + \varepsilon H$ is big for every $\varepsilon > 0$.

Definition 3. Let M be a complex manifold of dimension n and let $A_c^{p,q}(M)$ denote the space of $C^{\infty}(p, q)$ forms of compact support on M with usual Fréchet space structure. The dual space $D^{p,q}(M) := A_c^{n-p,n-q}(M)^*$ is called the space of (ϕ, q) -currents on M. The linear operators $\partial : D^{p,q}(M) \to D^{p+1,q}(M)$ and $\overline{\partial} : D^{p,q}(M) \to D^{p,q+1}(M)$ is defined by $\overline{\partial}: D^{p,q}(M) \longrightarrow D^{p,q+1}(M)$ is defined by

$$
\partial T(\varphi) = (-1)^{p+q+1} T(\partial \varphi), \ T \in D^{p,q}(M), \ \varphi \in A_c^{n-p-1,n-q}(M)
$$

and

 $\bar{\partial}T(\varphi) = (-1)^{p+q+1}T(\bar{\partial}\varphi), T \in D^{p,q}(M), \varphi \in A_c^{n-p,n-q-1}(M).$ We set $d = \partial + \overline{\partial}$. $T \in D^{p,q}(M)$ is called closed if $dT = 0$. $T \in D^{p,p}(M)$ is called real if $T(\varphi) = T(\overline{\varphi})$ holds for all $\varphi \in A_c^{n-p,n-p}(M)$. A real current (p, p) -current T is called positive if $(\sqrt{-1})^{p(n-p)}T(\eta \wedge \overline{\eta}) \geq 0$ holds for all $\eta \in A_c^{\rho,0}(M)$.

Since codimension p subvarieties are considered to be closed positive (p, p) -currents, closed positive (p, p) -currents are considered as a completion of the space of codimension p subvarieties with respect to the topology of currents. For an \bf{R} divisor \bf{D} on a smooth projective variety \bf{X} . We denote the class of D in $H^2(X, \mathbf{R})$ by $c_1(D)$.

Definition 4. Let T be a closed positive (p, p) -current on the open unit ball $B(1)$ in C^n with centre O. The Lelong number $\Theta(T, 0)$ of T at O is defined by

$$
\Theta(T, O) = \lim_{r \downarrow 0} \frac{1}{\pi^{n-p} r^{2(n-p)}} T(\chi(r) \omega^{n-p}),
$$

where $\omega = \frac{\sqrt{-1}}{2} \sum_{i=1}^{n} dz_i \wedge d\bar{z_i}$ and $\chi(r)$ be the characteristic function of the open ball of radius r with centre O in C^n .

It is well known that the Lelong number is invariant under coordinate changes. Hence we can define the Lelong number for a closed positive (p, p) -current on a complex manifold. It is well known that if a closed positive current T is defined by a codimension p -subvariety the Lelong number $\Theta(T, x)$ coincides the multiplicities of the subvariety at x.

We note that thanks to Hironaka resolution of singularities, to solve the conjecture, we can restrict ourselves to the case that X is smooth. Our theorem is stated as follows.

Theorem 1. Let X be a smooth projective variety and let D be a big **R**-Cartier divisor on X. Then there exists a closed positive $(1,1)$ -current T such that

- 1. T represents $c_1(D)$ in $H^2(X, \mathbf{R})$,
- 2. For every modification $f: Y \to X$, $\nu \in \mathbb{Z}_{\geq 0}$ and $y \in Y$, $mult_uB_s | f[*]([\nu D]) | \geq \nu \Theta(f[*]T, y)$

and

$$
\liminf_{\nu \to +\infty} \frac{1}{\nu} \mathit{mult}_y B_S | f^*([\nu D]) | = \Theta(f^*T, y)
$$

 $hold.$

We call T an Analytic Zariski decomposition(AZD) of D . The relation between Zariski decomposition and AZD is described by the following corotally and proposition.

Cororally 1. Let X be a smooth projective variety and let D be a nef and big **R** divisor on X. Then $c_1(D)$ can be represented by a closed positive $(1,1)$ -current T with $\Theta(T) \equiv 0$.

Proposition 1. Let X be a smooth projective variety and let D be an **R** divisor on X such that $c_1(D)$ can be represented by a closed positive (1,1) current T with $\Theta(T) \equiv 0$. Then D is nef.

Let X , D be as in Theorem 1. Suppose that there exists a modification $f: Y \rightarrow X$ such that there exists a Zariski decomposition $f^*D = P + N$ of f^*D on Y. Then by Cororally 1 there exists a closed positive (1,1) current S such that $c_1(P) = [S]$ and $\Theta(S) \equiv 0$. Then the push-forward $T = f_*(S)$ $+ N$) is a AZD of D. The main advantage of AZD is that we can consider the existence without changing the space by modifications.

3. Sketch of the proof of Theorem 1. Now I would like to sketch the proof of Theorem 1. Let X, D be as in Theorem 1. Let ω_{∞} be a C^{∞} closed real (1,1) form representing the class of D. Let ω_0 be a C^{∞} Kähler form on X. We set

$$
\omega_t=(1-e^{-t})\omega_{\infty}+e^{-t}\omega_0.
$$

Let Ω be a C^{∞} volume form on X. Now we consider the following initial value problem.

$$
\frac{\partial u}{\partial t} = \log \frac{(\omega_t + \sqrt{-1} \partial \overline{\partial} u)^n}{\Omega} - u \text{ on } X \times [0, T)
$$

$$
u = 0 \text{ on } X \times \{0\},
$$

where $n = \dim X$ and T is the maximal existence time for the C^{∞} solution u. By the standard implicit function theorem T is positive. Actually T is the maximal t such that the de Rham cohomology class of ω_t belongs to the Kähler cone of X . Now we have the following proposition.

Proposition 2. There exists a nonempty Zariski open subset U such that the solution $u: X \to [-\infty, \infty)$ exists in $L^1(X)$ and C^{∞} on U.

Now we set

$$
T=\lim_{t\to\infty}(\omega_t+\sqrt{-1}\partial\bar{\partial}u),
$$

where $\partial \overline{\partial}$ is taken in the sense of current. Then we can verify that T is analytic Zariski decomposition of D by using Hörmander's L^2 estimates for ∂ operator and C^0 -estimate of u .

References

- [11 Fujita T. The Zariski decompositions of canonical rings of elliptic threefolds. J. of Math. Soc. of Japan, 38, 19-37 (1986).
- [21 Kawamata Y. The Zariski decomposition of logcanonical divisor. Proc. Symp. in Pure Math., 46, 425-435 (1988).
- [3] Moriwaki A.: Semi-ampleness of the numerically effective part of Zariski decom position. J. of Math. of Kyoto Univ., 26, 465-482 (1986).
- [4] Zariski O.: The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface. Ann. Math., 76, 560-615 (1962).