Contiguity Relations for q-hypergeometric Function and Related Quantum Group

By Eiji HORIKAWA

Department of Mathematical Sciences, University of Tokyo (Communicated by Kunihiko KODAIRA, M. J. A., Sept. 14, 1992)

§1. Introduction. Gauss' hypergeometric function $F = F(\alpha, \beta, \gamma; x)$ is defined to be the power series

$$(1.1) F = \sum_{n=0}^{\infty} \frac{(a)_n(\beta)_n}{(\gamma)_n(1)_n} x^n,$$

(1.1) $F = \sum_{n=0}^{\infty} \frac{(a)_n (\beta)_n}{(\gamma)_n (1)_n} x^n,$ where $(\alpha)_n = \alpha(\alpha+1)(\alpha+2) \cdot \cdot \cdot \cdot (\alpha+n-1)$ etc. It satisfies a wellknown differential equation

(1.2)
$$x(1-x)\frac{d^2F}{dx^2} - \{(\alpha+\beta+1) \ x - \gamma\}\frac{dF}{dx} - \alpha\beta F = 0.$$

It is sometimes more convenient to write it in the form

$$(1.3) (x^{-1}\theta(\theta + \gamma - 1) - (\theta + a)(\theta + \beta)) F = 0,$$

where $\theta = xd/dx$. Heine defined its q-analogue $\varphi = \varphi(\alpha, \beta, \gamma; q; x)$ by the following power series (see, for example, [3]):

$$\varphi = \sum_{n=0}^{\infty} \frac{[\alpha]_q [\alpha + 1]_q \cdots [\alpha + n - 1]_q [\beta]_q [\beta + 1]_q \cdots [\beta + n - 1]_q}{[\gamma]_q [\gamma + 1]_q \cdots [\gamma + n - 1]_q [1]_q [2]_q \cdots [n]_q} x^n.$$
Here, $[\alpha]_q = \sum_{n=0}^{\infty} \frac{[\alpha]_q [\alpha + 1]_q \cdots [\alpha + n - 1]_q [\beta]_q [\beta]_q [\beta]_q}{[\gamma]_q [\gamma]_q \cdots [\gamma]_q} x^n.$

$$[A]_q = \frac{q^A - q^{-A}}{q - q^{-1}}$$

for any number A.

Heine and some authors define the basic number by the formula

$$[A]_{q} = \frac{1 - q^{A}}{1 - q}.$$

Some formulas look differently in this case (compare [1]). Throughout this paper, we stick to (1.5).

We introduce a shift operator T by

$$(1.7) Tf(x) = f(qx),$$

and a q-difference operator

$$[\theta]_q = \frac{T - T^{-1}}{q - q^{-1}}.$$

The latter is a q-analogue of xd/dx. We also introduce

(1.8)
$$[\theta + \alpha]_q = \frac{q^a T - q^{-\alpha} T^{-1}}{q - q^{-1}},$$

so that, we have

$$[\theta + \alpha]_{a}x^{n} = [n + a]_{a}x^{n}.$$

The power series (1.4) satisfies the following q-difference equation

$$(1.10) (x^{-1}[\theta]_q[\theta + \gamma - 1]_q - [\theta + \alpha]_q[\theta + \beta]_q) \varphi = 0.$$

This is an analogue of (1.3).

If we fix a set of parameters (α, β, γ) , then $F(\alpha', \beta', \gamma'; x)$ is called a contiguous function of $F(\alpha, \beta, \gamma; x)$, provided that $|\alpha - \alpha'|, |\beta - \beta'|$, $|\gamma - \gamma'|$ are all less than or equal to 1. It is known that there are differential operators of order 1 which produce contiguous functions out of $F(\alpha,$ $\beta, \gamma; x$) ([9,7]). These operators can be labeled as E_{ij} ($1 \le i, j \le 4, i \ne j$), and they correspond to basis elements of the Lie algebra \$1(4). We introduce a new set of parameters λ_i , i = 1, 2, 3, 4 by the following relations

$$\alpha = \lambda_2$$
, $\beta = 1 - \lambda_4$, $\gamma = \lambda_2 + \lambda_3 = 2 - \lambda_1 - \lambda_4$,

with $\sum_{i=1}^4 \lambda_i = 2$. Then E_{ij} increases λ_i and decreases λ_j by 1. For example, E_{21} raises α and γ , while E_{13} simply lowers γ . This new set of parameters stems from the Grassmann point of view of Gelfand et al ([4,5,6]) that Fshould be regarded as a function on the Grassmannian $G_{2,4}$ of the 2-planes in a 4-space, on which SL(4) acts on the right.

In this paper, we explicitly write down the contiguity relations for Heine's series in terms of q-difference operators and the shift operator. It turns out that these operators constitute a representation of $U_q(SL(4))$, the q-analogue of the universal enveloping algebra of the Lie group SL(4) (see[2,8]).

§2. Contiguity operators. We first introduce the following 4 obvious operators acting on Heine's series.

$$(2.1) E_{23} = -\left[\theta + \alpha\right]_q,$$

$$(2.2) E_{14} = - [\theta + \beta]_q,$$

$$(2.3) E_{13} = [\theta + \gamma - 1]_q,$$

$$(2.4) E_{24} = x^{-1} [\theta]_q.$$

To describe the operation of E_{ij} on Heine's series, we introduce the following notation. We simply write φ instead of $\varphi(\alpha, \beta, \gamma; q; x)$ and indicate the contiguous functions by super and subscripts. For example

$$\varphi^{\alpha} = \varphi(\alpha + 1, \beta, \gamma; q; x),$$

$$\varphi_{\gamma} = \varphi(\alpha, \beta, \gamma - 1; q; x),$$

$$\varphi^{\alpha\beta\gamma} = \varphi(\alpha + 1, \beta + 1, \gamma + 1; q; x).$$

The above 4 operators satisfy

$$(2.5) E_{23}\varphi = -[a]_q \varphi^{\alpha},$$

$$(2.6) E_{14}\varphi = -[\beta]_q \varphi^{\beta},$$

$$(2.7) E_{13}\varphi = [\gamma - 1]_q \varphi_{r},$$

(2.8)
$$E_{24}\varphi = \frac{[a]_q[\beta]_q}{[\gamma]_q} \varphi^{\alpha\beta\gamma}.$$

We note (1.10) is written in the form

$$(E_{24}E_{13}-E_{14}E_{23})\varphi=0.$$

By analogy of the classical factorization method, we obtain

$$(2.9) E_{32} = x[\theta + \beta]_q - [\theta + \gamma - \alpha]_q, E_{32}\varphi = [\alpha - \gamma]_q\varphi_{\alpha}$$

(2.9)
$$E_{32} = x[\theta + \beta]_q - [\theta + \gamma - \alpha]_q,$$
 $E_{32}\varphi = [\alpha - \gamma]_q\varphi_\alpha,$ (2.10) $E_{41} = x[\theta + \alpha]_q - [\theta + \gamma - \beta]_q,$ $E_{41}\varphi = [\beta - \gamma]_q\varphi_\beta,$

(2.10)
$$E_{41}$$
 $x_1\theta + \alpha_1q + \beta_1q + \beta_1q$

$$(2.12) \quad E_{42} = x[\theta + \alpha + \beta - 1]_{q} - [\theta + \gamma - 1]_{q}, \quad E_{42}\varphi = [1 - \gamma]_{q}\varphi_{\alpha\beta\gamma}$$

We further define

$$(2.13) \quad E_{12} = (q^{\alpha}x[\theta + \beta]_q - [\theta + \gamma - 1]_q)T, \qquad E_{12}\varphi = [1 - \gamma]_q\varphi_{\alpha r},$$

(2.14)
$$E_{21} = (q^{\beta}[\theta + \alpha]_q - q^{\gamma-1}x^{-1}[\theta]_q)T$$
, $E_{21}\varphi = \frac{[\alpha]_q[\gamma - \beta]_q}{[\gamma]_q}\varphi^{\alpha\gamma}$,

(2.15)
$$E_{34} = -(q^{\alpha}[\theta + \beta]_q - q^{\gamma-1}x^{-1}[\theta]_q)T,$$

$$E_{34}\varphi = -\frac{[\beta]_q[\gamma - \alpha]_q}{[\gamma]_q}\varphi^{\beta\gamma},$$

(2.16) $E_{43} = -(q^{\beta}x[\theta + \alpha]_q - [\theta + \gamma - 1]_q)T$, $E_{43}\varphi = [1 - \gamma]_q\varphi_{\beta\gamma}$. We remark that these are determined by the following relations:

$$(2.17) E_{13}E_{32} - q^{-1}E_{32}E_{13} = q^{\lambda_3 - 1}E_{12},$$

$$(2.18) E_{14}E_{42} - qE_{42}E_{14} = q^{1-\lambda_4}E_{12},$$

$$(2.19) E_{23}E_{31} - qE_{31}E_{23} = q^{1-\lambda_3}E_{21},$$

$$(2.20) E_{24}E_{41} - q^{-1}E_{41}E_{24} = q^{\lambda_4 - 1}E_{21},$$

$$(2.21) E_{42}E_{23} - q^{-1}E_{23}E_{42} = q^{\lambda_2 - 1}E_{43},$$

$$(2.22) E_{41}E_{13} - qE_{13}E_{41} = q^{1-\lambda_1}E_{43},$$

$$(2.23) E_{32}E_{24} - qE_{24}E_{32} = q^{1-\lambda_2}E_{34},$$

$$(2.24) E_{31}E_{14} - q^{-1}E_{14}E_{31} = q^{\lambda_1 - 1}E_{34}.$$

Theorem 1. These 12 operators E_{ij} , $i \neq j$ give contiguity relations which, in the limit $q \rightarrow 1$, reduce to those for Gauss' hypergeometric function.

§3. Representation of $U_q(SL(4))$. We set

$$e_i = E_{i,i+1}, \quad f_i = E_{i+1,i}, \quad i = 1, 2, 3.$$

By a direct calculation, the commutator $[e_i, f_i] = e_i f_i - f_i e_i$ satisfies

$$[e_i, f_i] \varphi = [\lambda_i - \lambda_{i+1}]_q \varphi, \qquad i = 1, 2, 3.$$

In view of these, we define

$$q^{h_i}\varphi = q^{\lambda_i - \lambda_{i+1}}\varphi, \qquad i = 1, 2, 3.$$

Then we have

(3.3)
$$[e_i, f_i] \varphi = \frac{q^{h_i} - q^{-h_i}}{q - q^{-1}} \varphi, \qquad i = 1, 2, 3.$$

We also have

$$q^{hi}e_jq^{-hi}\varphi = q^{aii}e_j\varphi,$$

$$q^{hi}f_jq^{-hi}\varphi = q^{-aij}f_j\varphi,$$

where $a_{ii}=2$, $a_{i,i\pm 1}=-1$, and $a_{ij}=0$ for the rest. In order to show that these operations give a representation of the q-analogue $U_q(SL(4))$ of the universal enveloping algebra of SL(4), we check that the following equalities hold in addition to (3.3) - (3.5) (see[8]).

$$(3.6) e_i^2 e_{i\pm 1} - (q + q^{-1}) e_i e_{i\pm 1} e_i + e_{i\pm 1} e_i^2 = 0,$$

(3.7)
$$f_i^2 f_{i\pm 1} - (q + q^{-1}) f_i f_{i\pm 1} f_i + f_{i\pm 1} f_i^2 = 0,$$

(3.8)
$$e_i e_j = e_j e_i \text{ for } |i-j| > 1,$$

$$(3.9) f_i f_j = f_i f_i for |i-j| > 1,$$

$$(3.10) e_i f_j = f_j e_i for i \neq j.$$

(The double signs are to be read in same order in (3.6) (3.7).)

We can state our main result as follows.

Theorem 2. These actions of $\{e_i, f_i, q^{hi}\}$ determine a representation of $U_q(SL(4))$.

This is valid not only for (1.4), but also for any solution of (1.10). In a

forthcoming paper, we shall study a similar problem for a q-analogue of Lauricella's F_D of l variables, which is related to the Grassmannian $G_{2,l+3}$, and therefore to SL(l+3).

Acknowledgements. The author would like to thank Professors E. Date and M. Noumi for valuable discussion.

References

- [1] A. K. Agarwal, E. G. Kalnins, and W. Miller, Jr.: Canonical equations and symmetry techniques for *q*-series. SIAM J. Math. Anal., **18**, 1519-1538 (1987).
- [2] V. Drinfeld: Quantum groups. Proc. Int. Congress of Mathematicians. Berkeley, pp. 798-820 (1986).
- [3] G. Gasper and M. Rahman: Basic Hypergeometric Series. Encyclopedia of Math. and Appl., **35**, Cambridge UP, Cambridge, England (1990).
- [4] I. M. Gelfand: General theory of hypergeometric functions. Dokl. Akad. Nauk USSR, 288, 14-18 (1986).
- [5] I. M. Gelfand and S. I. Gelfand: Generalized hypergeometric equations. ibid., 288, 279-283 (1986).
- [6] I. M. Gelfand, A. V. Zelevinsky, and M. M. Kapranov: Equations of hypergeometric type and toric varieties. Func. Anal. Appl., 23, no. 2, 12-26 (1989).
- [7] E. Horikawa: Transformations and contiguity relations for Gelfand's hypergeometric functions (to appear).
- [8] M. Jimbo: A q-difference analogue of $U(\mathfrak{g})$ and the Yang-Baxter equation. Lett. in Math. Physics, 10, 63-69 (1985).
- [9] W. Miller, Jr.: Lie theory and generalizations of the hypergeometric functions. SIAM J. Appl. Math., 25, 226-235 (1973).