
278 Proc. Japan Acad., 67, Ser. A (1991) [Vol. 67 (A),

72. An Additive Problem of Prime Numbers. III

By Akio FujII

Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J.A., Oct. 14, 1991)

1. Let 7 run over the imaginary parts of the zeros of the Riemann
zeta function (s). We assume the Riemann Hypothesis throughout this
article. Here we are conceraed with the value distribution of the bounded
oscillating quantity G(X) for X1 defined by

G(X)----
(1/2+i7)(3/2+i7)

This function plays important roles in some problems in the analytic
theory of numbers. We may recall two formulas involving G(X). One is
concerned with Goldbach’s problem on average and the other is concerned
with the prime number theorem on average.

( I ) For XXo, we have

n (+ A(m)A(k)--n. (1+ 1 )j (1-- 1

-4X/ZG(X)+O((X log XY+/),
where A(n) is the yon Mangoldt function.

(II) For Xl, we have

[ (E A(n)--y)dy= --2X/G(X)-X log(2z)+ log (2z) + C0
JO nKy

1--(6/u)’(2)--X (X-/2a(2a 1)),
a=l

where C is the Euler constant.
(I) has been proved in the author’s previous work [7]. (II) is known

to hold without assuming any unproved hypothesis in the following form
(cf. p. 52 and p. 74 of Edwards [5]). For XI,

X+ X- , ,
( a(n)-y)dy=- -X

,=0 4) 2a(2-1) (0)X+(-).O
0<(p)<

In (II), G(X) is the only oscillating part. However in (I), the remainder
term has still another oscillating property connected with the distribution
of the zeros of (s) as has been seen in [6] and [7].

We notice that the formula (II) implies, for example, that
()=(1/2)(-(1/2)+Co-(6/)’(2)-og 2)

and
(2) (/4)(-og +0-(6/a) ,(2)+log 2- (3/2)og 3).

Generally, we have for X> 1,
G(X)+(/2X,){(X- 1)og a- C0+ (6/) ’(2)} (1/2X,){(X/2) 1}

=--(1/2Xan){(X--1)log 2+ logA+(X-- [X]) logA
-log(-(Ux))+((x+ )/2)log(-(/x))},
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where A and A are the integers defined by

G(X)=- cos (T log X) + 3 cos(T log X)q-2T sin(T log X)
>0 T+1/4 >0 (T+ 1/4) (T"+ 9/4)
G(X)+ G(X), say.

1a(x) <_2 >Z->o (7 + 1/4)/7 +9/4
1 2 ;.- 1<2E--, (7+ 1/4)/T+ 9/4

+ /7+9/4 7+ 1/4
_<0.00105+0.00094_<0.0020,

-k 1 }= T+1/4

where r is the m-th positive imaginary part of the zeros of (s) for
m--l, 2, 3, and we notice that T,=14.1347251. ., Y=21.0220396. .,
Ya=25.0108575. ., Y=30.4248761. and g=, 1/(Y+1/4)=0.02309.
Suppose that M is the largest integer such that r(23/25)(r+l/4). M
can be taken to be 70. Then we have

IG’(X)--5 cs(r’lgX) y:
m=l 3/25) (r + 1/4)

< log ((23/25) (7+ 1/4) e/2) 1 3 0.137 log
2(23/25)ff+1/4) + ff+l/4y (23/25y

{ [V[xPElog FXJ/log p’] if X>2

i 1<X<2,
[X] being the Gauss symbol. Since the right hand side is :/=0 (in fact, it is
<0), we get the following consequence by applying Baker’s Theorem 2
[2] on the linear combination of the logarithms of the algebraic numbers.

Corollary 1. I/X(I) is an algebraic number, the
G(X)+(1/2X/){(X 1) log u--C0+ (6/u) 5’(2)}

is a transcendental number.
Without assuming any unproved hypothesis, we see that if X>1 is an

algebraic number, then

()=0 (Xe+*/p(p+I))+(X--1) log --C0+(6/)’(2)
is a transcendental number. More generally, we can ormulate a similar
result or the sum

(,)=b (Xe+/p(p+I)(p+2) .(p+k)) or k2.
Z. We re next concerned with the value distribution o G(X)

X. We shall give first a rough estimate o* G(X). It implies, in
pinciple, that

G (X)>0.012 or infinitely many X
and

G(X)<-0.012 or infinitely many X.
This should be compared with Littlewood [11].

To see this we rewrite G(X) as follows.
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/23[7. 1 350}+0.443 log og-- --))+4.
1(0.75732+0.10274)

_
0.0043,

r+l/4
where we have used Backlund’s estimate (cf. p. 134 of [5]) for T_> 2

T T 7)1 0.137 log T +0.443 log log T +4.350.
2 2 8

where

M COS(r log X)G(X) + O,-- +1/4

101_0.0063.
Now suppose that or =1/10, y* and some integers k, m= 1, 2, ..., 70

satisfy
17y*--2kl< for m=1,2, ..., 70.

By Kronecker’s theorem this is possible if 7,7,... and L0 are linearly
independent over the rationals. In fact, we do not need to assume it. We
could find such solutions by Odlyzko and te Riele [14], where they have
encountered a similar problem and have disproved Mertens Conjecture by
using them. Thus we get

G(e*) = (1/ff+ 1/4))+’+,where

Since
Itg’]_ = (1/(7+1/4))_e. 0.02309... 0.0003.

1+’1_0.0066 and (1/7+1/4)>0.0187
we get y* such that G(e*)0.012.

Similarly, one could get y** such that G(e**)-0.012.. Here we shall seek a more precise information concerning the
value distribution of G(X) as Xo. We propose the ollowing problem.

Problem. To study the function g(fl) of fl defined by
g(fl)=limx (1/X){a e [1, X], G(a)fl},

assuming that it exists, where Ifl]>0 (1/J+ 1/4’J+9/4)
A more general problem may be the value distribution of

(X)=>o (X/(1/2+iD (3/2 + iD).
This problem corresponds to the vale distribution of

log (a0+ it)
or any a0 1. Bohr and Jessen (cf. [3], [4] and Chap. XI of [17]) constructed
a beautiful theory to this, where the linear independence of the logarithms
of prime numbers is essential. We shall describe below some consequences
of the analogue of Bohr-Jessen’s theory under the following assumption.

(A)" ’s are linearly independent over the rationals.
We put

f(a)=(e)= r e+)
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with

r=(1//+1/4. /’+9/4)
and

V=-arg(((3/2)+ir)((1/2)+im)) or m--1,2,3,
We put also

() (o, , , ..., , ) re,
m=l

where 0_t_ 1.
Under (A), or any 0, there exist N, a and t, 0;, 0, ..., 0 such that

/lre("r/) <s, rea <
m=N+l

and

r e("/)- r ea .
Moreover, the situation is simpler since the sums of the convex curves in
Bohr-Jessen’s theory is here the sums of the circles. Thus we get the
ollowing results.

(III) {the values taken by f(a)} is everywhere dense in the set
{the velues taken by ()}. Moreover we have

{he values taken by (0)}= w;lw
(IV) Por a eloeg reetagle R i the eomle lae, we have

lim I{O<<X" f()e R}I= P(+i)gd,

where the eontino etion N(+i) i eontreted below.
Nor (III), we noiee only ha

1 1
,/r+ 1/.r+/, r+/.r+/4"

Prom (IV), we get the following consequence concerning our roblem stated
above.

Corollary 2.

fl_ +r, we have

put

For any fl in the interval -r---- 1
r>0 /,2+ 1/4. /’2+ 9/4

g()--- ffl_rF(x+iy)ddy
We shall now describe the construction of F(z). For this purpose we

Let F(z) be defined by

F(z) /4rr--(Izl--r--r)

0
Using this we define F(z) or N_3 by

if z e "the interior of

if z e "the boundary of
if z e X.



282 A. Fu,II [Vol. 67 (A),

F(z) Fz(z--r --r r
where we put r’---r, r=r, r--r, r=r, r=r, rs=r and rn:rn’ for n>9.
Then we define F(z) by

F(z) lira F(z).

This F(z) is the desired unction as is proved in Bohr-Jessen [3] and [4] (cf.
[13] or a sketch of their method).

4. As a supplement to the previous sections, we may describe some
remarks on the value distribution of Go(X) which is defined below and
plays also an important role i the prime number theory.

Go(Z)=iE>o Xr/iT} or
Go(X) is a special value of the ollowing zeta function Z.(s) which was
introduced by the author in [8] and [9] and is shown to be entire as a
unction of s.

Z.(s) >0 sin(Y)/".
In fact, G0(X)=Zox(1) and it appears in the following formula (cf. Guinand
[10]).

1 A(n) 1A(X) (/X) 1 /-+1Z,ozx(1)= --- x /-- 4 +/-t= d--- +- log
/X 1

+larctan 1 1Co 1 1u---log 8u
2 /X 4 8 4
1=-{ A(n)-X}+O(1).2/x

We noice firs ha for any algebraic number X> 1,
__/X-4-1 :/:AP(X)_/+2(_ I)_ +-/2 ex,
VX--1

where we put
[[ p"() if X>2

t 1 if 1<X<2,
c(p)=(1-p(-’/)’x3/’3)/(/p-1) and P(X)=e,

because the right hand side is transcendental by Baker’s Theorem 8 in [2].
Then using Baker’s Theorem 2 in [2], we get the following consequence.

Corollary . I X is an agebraic number >1, then
Go(X)-- (1/2)arctan(1//-X)+ (1/4) Co+ (1/4) log

is a transcendenta number.
Here we may notice that the following assumption (A’) implies the

existence of X*= e* and a positive constant C satisfying, A(n)-- X*>C/X* logX*,
n<X*

since, by pp. 255-256 of [15], or X, T_>2, we have

A(n)-X=-2/X sin()" log X) +O(/X-+ X log(XT)).<x 0<<r 7 T
(A’): For any >0 and any T> To, there exists a number y* such that
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and
i) e/)* AgT for some positive constant A

ii) with some integers mr,
Iy*+(u/2)--2mrl for 0’T.

(A’) might be too strong because its consequence is much stronger than
Montgomery’s suggestion in the Foreward of Ingham [11].

Moreover, the value distribution of Go(X) as X varies is a little bit
delicate as is seen in the following theorem proved by the author in [8] and
[9].

(V) For any prime number p and an integer k>_l, we have
1 logp sin t dtlim0<_< sin0"(log,p+u/m)) -Zo(1)= - 2 p/ Jo t

and

lim Z.(1)-- Z,o.(1)=
log p+0

(V) represents Gibbs’s phenomenon.

1 logp sint dt.
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