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1. Introduction. In this paper, we consider the differential equation
(1.1) P(z, w’)-Q(z, w),
in the complex plane, where P(z, w’) and Q(z, w) are polynomials of w’ and
w with meromorphic (maybe transcendental) coefficients, respectively"

P(z, w’)=w’+ bp_l(z)w’-l + +b(z)w’(1.19
[Q(z, w)=aq(z)w +a_(z)w-+. +ao(z), %(z)O.

We use standard notations in Nevanlinna theory [2] [5]. Let f(z) be a
meromorphic unction. As usual, re(r, f), N(r, f) and T(r, f) denote the
proximity unction, the counting function, and the characteristic unction
of f(z), respectively.

A function (r), O_r c, is said to be S(r, f) if there is a set EcR
of finite linear measure such that (r)=o(T(r, f)) as r--c, r e E. A mero-
morphic function a(z) is small with respect to f(z), if T(r, a)=S(r, f).

Let 9(z, w, w’,..., w)) be a differential polynomial of w with mero-
morphic coefficients and /be the set o its coefficients. We call a trans-
cendental meromorphic solution w(z)of the differential equation tg(z, w, w’,
.., w())=0 is an admissible solution, if T(r, a)=S(r, w) for any a(z) e l.

Gackstatter and Laine [1] investigated the binomial equation
(1.2) (w’)=Q(z, w) (b_ b0 in (1.19)
and they conjectured that it would not possess any admissible solution if
lq<=p--1. Some investigations have been done for this conjecture, e.g.
[6] [8] [9] [10].

In [6], Ozawa pointed out that this conjecture is closely connected with
a problem due to Hayman ([3] Problem 1.21). If (1.1) possesses an admis-
sible solution w(z), then from (1.1) and (1.19.
(1.3) pT(r, w’)=qT(r, w)+S(r, w).
Thus T(r, w)/T((r, w’)-p/ql for r-+c outside a set E o finite linear
measure.

Recently, He and Laine [4] solved this conjecture affirmatively.

Theorem A. When l=q<=p--1 in (1.2), the differential equation (1.2)
possesses no admissible solution.

Toda [9] treated more general differential equation
(1.4) H(z, w, w’, ..., w())’=Q(z, w),
where H(z, w, w’, ..., w() is a differential polynomial o w. He proved
the following theorem.
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Theorem B. When Ogq=m--1 in (1.4), the differential equation (1.4)
has no admissible solution unless it is of the following form"
(1.5) H(z, w, w’, ..., w())=a(z)(w+(z)), a(z)O.

In this paper, we will show that Theorem A can be generalized or the
equation (1.1) in place of (1.2).

Theorem 1. When l=q<=p-1 in (1.1), the differential equation (1.1)
possesses no admissible solution.

2. Preliminary lemmas. We consider the equation (1.1). In the
below, /denotes the set of the coefficients of (1.1). Let w(z) be an admis-
sible solution o (1.1) (if exists). For c e C [J {c}, z0 is an admissible c-poir, t
of w(z), if w(zo)--c and if z0 is neither zero nor pole o any unctions which
belong to /.

Lemma 1. Suppose the differential equation (1.1)possesses an admis-
sible solution w(z) for l<=q<=p--1. Then
(2.1) N(r, w)--S(r, w), N(r, w’)--S(r, w).

Proof of Lemma 1. Suppose there exists an admissible pole Zo of w(z)
and let Z be its order. From (1.1), (/+ 1)p=/q, which contradicts to the
condition l<=q<=p-1. Hence (2.1) holds.

For the estimations of the proximity functions o some rationals of w
and w’, we state the ollowing lemma.

Lemma 2. Let (]=1, 2,..., s)be complex constants such that
re(r, w)=S(r, w). Then, for

( (w’)" .) =S(r, w).r,

The proof of Lemma 2 is easily obtained by the theorem on the loga-
rithmic derivatives (see, [5] p. 245).

Lemma :. The differential equation (1.1) possesses no admissible
solution for p--2 and q--1.

For the proof of Lemma 3, we give a remark.
Remark 1. Let ](z) be a rational o members of /and their deriva-

tives. Then we have T(r, )_K,e T(r, a)+S(r, w), for some K0.
Thus ](z) is a small unction with respect to w(z). We denote n*(r, c; w),
the number of c-point z0 of w(z) in Izl<=r so that z0 satisfies V(z0)=0.
N* (r, c w) is defined in the usual way. Assume that N(r, c w) :/:S(r, w),
or some c e C U {c}, then there exists an admissible c-point of w(z). Since

](z) is small with respect to w(z), there exists an admissible c-point
w(z), which is neither zero nor pole of ](z). Hence, if N*(r, c; w):/:S(r, w),
then V(z)0.

Proof of Lemma 3. Suppose (1.1) possesses an admissible solution
w(z) for p=2 and q=l. Put u=w+ao(z)/a(z)+b(z)/4a(z), then
(2.2) (u’ + fl(z))=a(z)u,
where fl(z)= b(z)/2-(ao(z)/a(z)+ bl(Z)/4a(z))’.

Suppose N(r, O;u)=/=S(r, u). Let z0 be an admissible zero of u(z).
From (2.2), z0 is a multiple zero o u(z). Hence u’(z0)=0, which implies
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fl(z0)=0 by (2.2). Thus N(r, 0; u)=/=S(r, u). By Remark 1, fl(z)--0 and by
Theorem A, (2.2) has no admissible solution. Therefore N(r, 0; u)=S(r, u).

Put (z)=u’/u, then by Lemma 1

N(r, (z))<=N(r, u)+N(r, O, u)=S(r, u).
By the theorem on the logarithmic derivatives, we have re(r, )=S(r, u).
Thus (z) is a small function, hence ((z)u+(z))=a(z)u, which implies
T(r, u)--S(r, u). This is a contradiction.

:. Proof of Theorem 1. For the proof of Theorem 1, we will ollow
Steinmetz’s ideas in [7].

Proof of Theorem 1. By Lemma 3, we will prove for the case p3.
Suppose (1.1) possesses an admissible solution w(z).

We consider the ollowing conditions, for a complex constant r.

(3.1) m(r, r; w)=S(r, w),
and
(3.2) Q (z, r) 0.

We have a plenty of such r’s as seen by the second undamental
theorem.

Put
F(z r)=(P(z, w’)-Q(z, r))/(w-r),

where r (]=1, 2,..., p) are arbitrarily given distinct complex constants
satisfying the coaditions (3.1) and (3.2). Then by Lemma 1
(3.3) N(r, F(z r)) S(r, w) ]-- 1, 2, ., p.

We consider a linear combinations h(z)== AF(z; r), A constants"
A A (z,(3.4) h(z)=P(z, w’) - e r)

From (3.3) we have N(r, h)=S(s, w). By the condition (3.1), the proximity
function of the second term of the right-hand side of (3.4) is S(r, w). We
choose complex constants A, ..., A so that

A A(3.5)

where A is a non-zero constant.
triVial solution of the system

[]__(w-)
In act, this choice is regarded as a non-

A1

where -)is a fundamental symmetric expression of r (l<]<=p,= ]=/=n) of
degree m. By (3.5) and Lemma 2, the proximity unction of the first term
of (3 4) is also S(r, w). Thus we obtaia re(r, h)=S(r, w). Hence h(z) is a
small unction with respect to w(z).

First we treat the case h(z)O. From (3.5)
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p p

(3.6) AP(z, w’)-- h(z)

From (3.6), T(r, w’)=T(r, w)+S(f,w). Thus, by (1.3), T(r, w)=S(r, w),
which is a contradiction.

It remains to consider the case h(z)=_O. From (3.5)
1 AQ(z,r) [ (w-r).(3.7) P(z, w’)=
z_-;- --From (3.7) and (1.1), the right-hand side of (3.7) is identically equal to

Q(z, w), otherwise we have T(r, w)--S(r, w). Comparing the coefficients of
w, we obtain the following equation
(3.8) t(z)A+t(z)A+. +t(z)A=O,
where t(z)--Q(z,r)-(-1)-a_(z)[]r, and a(z)=0, if mq. Since
p3 and a(z)O, we choose r (]-1,2,..., p) so that

1 1 1

det " 0.

t,(z) t(z) t(z)
Thus A=0 for all ]= 1, 2,..., p, which contradicts our assumption. Hence
Theorem 1 is proved.
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