67. On a Generalization of MacPherson's Chern Homology Class. III

By Shoji Yokura*)
Department of Mathematics, College of Liberal Arts,
University of Kagoshima

(Communicated by Kunihiko Kodaira, M. J. A., Oct. 14, 1991)

- § 0. Introduction. In [3] Deligne-Grothendieck-MacPherson's natural transformation C_* is the unique natural transformation from the "constructible function" covariant functor ${\mathcal F}$ to the usual Z-homology covariant functor $H_*(\ ; Z)$, satisfying the extra condition that if X is smooth then the special value $C_*(X)(1_X)$ is equal to the Poincaré dual of the total Chern cohomology class c(X) of the variety X, where 1_x is the characteristic function on X. If the above extra condition is dropped, then there are infinitely many natural transformations from \mathcal{F} to $H_*(\ ; \mathbf{Z})$. Indeed, if we let $C_{*i}: \mathcal{F} \rightarrow H_{2i}(\;; Z)$ be the composite of the above natural transformation $C_*: \mathcal{D} \rightarrow H_*(\ ; Z)$ and $H_*(\ ; Z) \rightarrow H_{2i}(\ ; Z)$, the natural transformation "picking up" the 2i-dimensional component of the total homology class, then the linear form $\sum_{i\geq 0} m_i C_{*i}$ is obviously a natural transformation, where m_i is an integer. Thus there is a simple problem of determining all natural transformations from \mathcal{D} to $H_*(\ ; Z)$, to which there is a naive conjecture (due to G. Kennedy): any natural transformation must be the above linear form $\sum_{i\geq 0} m_i C_{*i}$. This conjecture is still open. In this paper we announce a characterization of this linear natural transformation $\sum_{i\geq 0} m_i C_{*i}$, which can be proved using the same technique as that of our previous papers [5, 6] and we give a very partial result to this Detailed proofs will appear somewhere else.
- § 1. A characterization of $\sum_{i\geq 0} m_i C_{*i}$. The linear natural transformation $\sum_{i\geq 0} m_i C_{*i}$ obviously satisfies the condition that $(\sum_{i\geq 0} m_i C_{*i})(V)(\mathbf{1}_V) = (\sum_{0\leq i\leq \dim V} m_{\dim V-i} c_i)(V)\cap [V]$ for any compact complex smooth variety V. In fact, we can show that any natural transformation $\tau\colon \mathcal{F}\to H_*(\ ;Z)$ satisfying this kind of extra condition must be linear. To be more precise, let us call $cl^{(n)} = \sum_{0\leq i\leq n} cl_i$ a degree-n characteristic class of complex vector bundles, where $cl_0 = \lambda_0 c_0$ and $cl_i = P_i(c_1, c_2, \cdots, c_i)$ is a homogeneous polynomial of degree i with k-th Chern class c_k being of weight k. Note that any characteristic cohomology class of a complex vector bundle can be expressed as a polynomial of individual Chern classes ([1, 4]). With this terminology we can show the following

Theorem 1.1. Let $\{cl^{(n)}\}_{n\geq 0}$ be a sequence of degree-n characteristic

^{*} Partially supported by Grant-in-Aid for Scientific Research (No. 03640081), Ministry of Education, Science and Culture.

classes. A necessary and sufficient condition for that $\tau \colon \mathcal{F} \to H_*(\ ; Z)$ is a natural transformation satisfying the "dimension-wise universal" condition that $\tau(V)(1_V) = cl^{(\dim V)}(V) \cap [V]$ for any compact complex smooth variety V is that there exists a sequence of integers $\{m_i\}_{i\geq 0}$ such that each $cl^{(n)} = \sum_{0 \leq i \leq n} m_{n-i}c_i$, i.e., $\tau = \sum_{i \geq 0} m_i C_{*i}$.

For a total characteristic class $cl = \sum_{i \geq 0} cl_i$ let $cl^{[n]} = \sum_{0 \leq i \leq n} cl_i$ be the *n-th truncated characteristic class* of the total characteristic class cl (cf. [2, Appendice B]), which is a degree-n characteristic class. Since $cl(V) = cl^{\text{Cdim} V}(V)$, we get the following

Corollary 1.2 ([5, Theorem (1.4)]). Let $cl = \sum_{i \geq 0} cl_i$ be a total characteristic class of complex vector bundles. A necessary and sufficient condition for that $\tau \colon \mathcal{D} \to H_*(\ ; \mathbf{Z})$ is a natural transformation satisfying the "universal" condition that $\tau(V)(\mathbf{1}_v) = cl(V) \cap [V]$ for any compact complex smooth variety V is that cl is an integral multiple of the total Chern class c, i.e., $cl = m(\sum_{i \geq 0} c_i)$, i.e., $\tau = mC_*$.

The above theorem can be proved by using "linear independence of Chern numbers" (for a more precise statement of this, see Milnor's book [4]) and the following propositions.

Proposition 1.3. Let $I_k(n) = \{r_1, r_2, \dots, r_k\}$ be a partition of n and let $c_{I_k(n)} := c_{r_1} \cdot c_{r_2} \cdot \cdots c_{r_k}$. For compact complex manifolds X and Y, where dim Y = n, and the projection $\pi : X \times Y \to X$, the following equality holds: $\pi_*(c_{I_k(n)}(X \times Y) \cap [X \times Y]) = (c_{I_k(n)}(Y) \cap [Y])[X]$.

Proposition 1.4. Suppose that τ and $\tau': \mathcal{F} \rightarrow H_*(\ ; \mathbf{Z})$ are two natural transformations. Then $\tau = \tau'$ if and only if $\tau(V)(\mathbf{1}_v) = \tau'(V)(\mathbf{1}_v)$ for any compact complex smooth variety V.

As a modified version of Kennedy's conjecture, we pose the following one:

Conjecture. If $\tau: \mathcal{F} \to H_*(\ ; Z)$ is a natural transformation such that for any compact complex smooth variety $V_{\tau}(V)(\mathbf{1}_v)$ is the Poincaré dual of a characteristic cohomology class of the variety V, then τ must be linear, i.e., $\tau = \sum_{i \geq 0} m_i C_{*i}$.

§ 2. A partial result about the conjecture. At the moment we can show only the following partial results about the conjecture.

Proposition 2.1. Let $\tau: \mathcal{F} \rightarrow H_*(\ ; \mathbf{Z})$ be a natural transformation.

(1) There exists a unique integer m_0 such that for any compact complex (not necessarily smooth) variety X

$$(\tau(X)(\mathbf{1}_X))_0 = m_0 C_{*0}(X)(\mathbf{1}_X) = m_0 \chi(X).$$

(2) There exists a unique integer m_n such that for any compact complex smooth variety X of each dimension n

$$(\tau(X)(\mathbf{1}_X))_{2n} = m_n C_{*n}(X)(\mathbf{1}_X) = m_n[X].$$

Here $(\cdot)_i$ means the i-dimensional component of the total homology class.

Corollary 2.2. Let $\tau: \mathcal{F} \rightarrow H_*(\ ; Z)$ be a natural transformation. If we restrict this natural transformation τ to the subcategory of compact complex algebraic varieties of dimension ≤ 1 , then there exist integers m_0

and m_1 such that $\tau = m_0 C_{*0} + m_1 C_{*1}$.

References

- [1] F. Hirzebruch: Topological Methods in Algebraic Geometry. 3rd ed., Springer-Verlag (1966).
- [2] M. Karoubi: Théorie générale des classes caractéristiques sécondaires. K-Theory, vol. 4, no. 1, pp. 55-87 (1990).
- [3] R. MacPherson: Chern classes for singular algebraic varieties. Ann. of Math., 100, 423-432 (1974).
- [4] J. W. Milnor and J. D. Stasheff: Characteristic classes. Ann. of Math. Studies, no. 76, Princeton Univ. Press (1974).
- [5] S. Yokura: Some variants of Deligne-Grothendieck-MacPherson's natural transformation C_* of Chern class. Crelles Journal, Band 419, pp. 199-211 (1991).
- [6] —: An extension of Deligne-Grothendieck-MacPherson's natural transformation C_* of Chern class for singular algebraic varieties. Publ. RIMS. Kyoto Univ, vol. 27, no. 5 (1991).