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1o Introduction. This paper studies the existence and differentia-
bility of local solutions in time of the mixed initial boundary value prob-
lems for first order symmetric hyperbolic systems. We assume that the
boundary is characteristic of constant multiplicity. A general theory for
the case where the boundary is non-characteristic was developed by
Friedrichs [2], Lax-Phillips [3] and Rauch-Massey III [7]. The case of the
characteristic boundary has been treated by Lax-Phillips [3], Tsuji [9],
Majda-Osher [5] and Rauch [6]. In particular, the tangential regularity
of solutions for the latter case was obtained in [6].

The basic estimate we seek to establish is motivated by the work of
Yanagisawa-Matsumura [10]. The norm used in that paper seems to be
most suitable for our problem in the sense that "the loss of derivatives in
the normal directions" is appropriately taken into account. (See also Chen
[1].) Although we confine ourselves to the linear theory in this note, the
main theorem is formulated in such a way that the applications to the
quasilinear initial boundary value problems are possible.

Let/fcR be an open bounded set lying on one side of its boundary
F. We treat differential operators of the form

L-- Ao(v)t-+- Aj(v)-+-B(v),
j=l

where ,-- lot, O--3/3x, and v--(Vl, v, ..., v,) is a given smooth function
of the time t and the space variable x-(x,, x, ..., x). It is assumed that
A0(.), A(.), and B(.) are depending smoothly on their arguments. There-
fore Ao(v), A(v), and B(v) are smoothly va.rying real l matrices defined
for (t, x) e [0, T] /2. We study the mixed initial boundary value problem
(1.1) Lu--F in [0, T]
(1.2) M(x)u--O in [0, T] /,
(1.3) u(O, x)--f(x) for x e
The unknown function u(t, x) is a vector-valued function with compo-
nents. M(x) is an ll real matrix depending smoothly on x e F. M is of
constant rank everywhere. The inhomogeneous term F of the equation
and the initial data f are given vector-valued functions defined on [0, T]
and/2, respectively. Let ,=(,,,, ...,,) be the unit outward normal to
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F. The boundary matrix, A(V)==IA(v),, is assumed to be of con-
stant rank on F. We write u,--3,u, u=3u in the following.

2. Preliminaries. Let H(tg)be the usual Sobolev space. A vector
field A e C(9; C) is tangential iff (A(x), ,(x))=0 or all x e F. When
is a bounded open set with smooth boundary, the function space H() is
defined as the set of functions satisfying the following properties"

i) Let 9 be the set of x in such that dist (x, F)). Then u e H(9)
for 0 small enough.

ii) Let A, A,..., A be tangential vector fields and let A, A,..., A be
non-tangential vector fields. Then AA. AAA Au e L(9), if ]+2k
m.

H() is normed as ollows. We choose as usual the,covering of F,
diffeomorphisms, and cut off functions, say, G, r, Z, 1 ]gN. Then
(Zu)or has as its natural domain +={x[[xl(l,xO} with F corre-
sponding to x=0. The linearly independent tangential vector fields are
given in local coordinates by , k=2, ..., n, and the normal vector field
corresponds to 3. Let Z0 be a cut off function such that Z0=0 on a neigh-

1 o.n.borhood o.f F and Z0 1 on some . We may assume that =0Z=
Then the norm in H() is

N

(2.1) u[
j=l

(2.2) IIzul L(+)
1l+2km

where =(,, , ..., n), Il=,++’’" +,, and (x,3,)’3... ". The
norms arising from different choices of O, r, Z are equivalent.

If X is a Banach space and IR is an interval, then C(I;X) is the
space of ] times continuously differentiable functions on I taking values in
X. Similary, C.(I;X) denotes the space of ] times continuously differen-
tiable functions with values in X in the weak topology. First, let

X([0, T]; )-- C([0, T] H-(#)).
j=0

I[[ulllx(_o,r]; sup ,l[lu(t) I1[,.,.,
OgtgT

(2.4) lllu(t)]l],.= ]3tu(t)[-,..
j=O

Note that, if we write a=(], fl), lal=j+[fl], and a,=aa., then Illu(t)ll],.=
.+ ]33u(t)[ . X([0, T]; 9) is defined similarly by using H"-(9) in
place of H$-(tg). We obtain X,([0, T];9) replacing C by C’ in the
definition o.f X([0, T]; 9).

3. The existence and differentiability theorem. We give the main
result of this paper.

Theorem 3.1. Let m

_
1 be an integer and let s max (m, 2[n/2] + 6).

The mixed initial boundary value problem (1.1), (1.2), (1.3) has a unique
solution in X([0, T]; 9), provided the following conditions are satisfied"

The norm is
(2.3)
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i)
ii)

iii)
iv)
v)

vi)

vii)
viii)
ix)
x)

CR is a bounded open set with C+’ boundary F.
M(x) is of C+’ class and dim ker M(x) is constant on F.
v e X([0, T]; t) and Ov(O) e H-(9), Oim-1.
v(t, x) e ker M(x) for (t, x) e [0, T] F.
A(v), ]=0,1, ..., n, are real symmetric matrices for (t, x)
[0, T] 2, if v takes values in R and satisfies iii), iv). In addi-
tion, Ao(v) is positive definite on [0, T] tO.
There exists a linear subspace (x) of C such that, for any v
as in v), we have ker A()(v(t, x))=(x), (t, x) e [0, T] F.
dim //(x)is constant on F.
ker M(x) is maximally nonnegative for A(v), where v is as in v).
F e X([0, T]; 9), OF(0) e H--(9), Oim--1, and f e H(tO).
The compatibility conditions up to order m--1 are satisfied, i.e.,
M "Ou(0)" 0 on F, 0 i m 1.

The solution obeys the estimate

(3.1) Illu(t)lll,,<_C(M,_,)(Ifll+lllF(O)lll_,)ec(M.) +t
for t e [0, T], where M_ and M are constants such that
for r=s--1, s. C(M_) and C(M) denote the constants depending only on
M_ and M, respectively.

Remark 1. Given the system (1.1) and the initial data (1.2), "Ou(0)"
is defined by ormally taking i--1 time derivatives of the system, solving
for Ou and evaluating at time t=0.

Remark 2. The conditions for the set o.f data f,F are somewhat
stringent. But, by a limit argument, we can obtain the general conditions
for f,F leading to. solutions in X([0, T];t9). This will be discussed
elsewhere.

4o Outline of proof, First we show the existence of approximate
systems and approximate initial data.

Lemma 4.1. Let f, F, and v be as in Theorem 3.1. Then there exist
sequences f, F, and v, satisfying the following properties:

i) f e H+2(tO), k>_l, and f >f in H(2).
ii) F e H+([0, T]X 9), k_>l, and F >F in X([0, T]; 2).

Furthermore, 3F(O) >3F(0) in H-’-(t) for 0<i<m--1.
iii) v e X’+’([0, T]; tO), k_>l, and v >v in X([0, T]; tO).

In addition, v(t, x) e ker M(x) for (t, x) e [0, T] X F.
iv) M"3u(0)"=0 on F for 0<i<m, where "3u(0) is defined like

"3u(0)" but using f, F, and v in place of f, F, and v. (See
Remark 1.)

This lemma can be proved by combining the arguments in [7], [8] with
the trace theorem in H(2). Next we apply the method, which is usually
called the non-characteristic regularization, to the approximate systems.
(See, e.g., [6], [8].) Let us consider the following mixed problems.
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(4.1) A(v)u) - j=l
A(v)u) -B(v)u()

1F+ C(k) . ,U in [0, T]

(4.2) Mu =0 in [0, T] X F,
(4.3) u()(O, x)=f(x) for x e
Here U e X*([0, T]; 9) satisfies 8U(0)="8u(0)’’, O<i<m, and 8*U(0)
=0. C(k) denotes a constant such that

Notice that, (i) the boundary F is non-characteristic for the system
(4.1), (ii) the boundary condition (4.2) is still maximally nonnegative on
[0, T] X F for the system (4.1), (iii) the compatibility conditions up to order
m are satisfied for the mixed problem (4.1), (4.2), (4.3). These observa-
tions lead to the following

Proposition 4.2. The mixed initial boundary value problem (4.1),
(4.2), (4.3) has a unique solution u() in X+([0, T]; 9), which obeys the
estimate

(4.4) [u()(t),.C(M_)

{

or t e [0, T]. Here the eott C(M_)d C(M) are a i Theorem 8.1.
As for the roo. o this roposition, the existence ofsolution is shown

by alying heorem A.1 in [8]. he proof o he estimate (.)will be
sketched in he nex section. he uniform estimates for ( which we
seek for follows from Proposition 4..2. Then by a standard rgument, we
obtain

Proposition 4.3. The mied iitia bodar vale roblem (1.1),
(1.2), (1.8) has iqe otio i X’([O, T]; 9).

Using Naueh’s mollifier given in [6] and following the arguments in
[], we have finally

Proposition 4.4. The otio obtaieg

X([0, ]; 9).
hus the proo of the firs art of heo.rem 8.1 is completed. The

estimate (8.1) is obtained by leing in (.).
5. Proof of the estimate (4.4). Using localization and changes

the dependent variables, we reduce to the ease where both ker M()and
ker A(v)() are independent o . his is realized by constructing
smooh unitary matrix-valued function defined on each of he ptehs. The
relevant otion o the boundary F is maed to the hyerplane =0 by
changes o.f the independent variables, and the suort of is contained
in {1<1, 0}. Thus we have the transformed mixed roblem
(g.1) Ao(v)+ A()u+B(v)-s=F in [0, T]X{>0},
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(5.2) Mu=0 on [0, T] X {X IX1
(5.3) u(O, x)=f(x) or x e {xl x_0},
where0 is a small parameter and M is a constant matrix. We write,
for O<_]<_n,

Here , are pp matrices and , are q q matrices. We
have /=p+q and q=dim(x). Since --A(v) is the boundary matrix o.f
the system (5.1), it follows rom conditions vi), vii) o.f Theorem 3.1 that
A is a pp invertible matrix on [0, T]x{x]xO}. We have also that
A, A, and A vanish on [0, T] {x x, =O}. We write u=(u,uH),
where u e C, u e C. Similarly, F=(F[, F[9t. The observations pre-
ceding Proposition 4.2 are valid for the mixed problem (5.1), (5.2), (5.3).
The estimate (4.4) follows from Lemma 5.1 given below and the Gronwall’s
inequality. We write,In. ],t=]3.
in the following. Note that ]. l,t+l IIIm,,> =Ill lm,,

Lemma .1. Let u satisfy (5.1), (5.2), (5.3). Then, for t e [0, T],
(5.4) ]u(t)[[]m,tanC]]u(O)]][m, tan

+C(M)

(5.5) ]u(t)l_l,,ciu(O)l[[_,,

(5.7) IlluY(t)lll,<,>SCIllu-(O)lllm,<,>

+C(M,) + (r) [, (,))dr,

where C is a constant independent of
In the proof of (5.4), the main terms to be estimated are the commu-

tator parts [O,A,]u,, 0<llEm, which include the terms o.f the orm
Irl=l. Here Z is At, Atz, or Att and w is uI or uII, We

utilize the act that is a tangential vector field, since Z vanishes
on [0, T] X{xl x,=0}. The estimate (5.6) is obtained by expressing O,u in
terms o O,u and the tangential derivatives of u, and then using the equa-
tion (5.1) and the fact that At is invertible. To show (5.7), we rewrite
(5.1) as

IIlII II

j=l

u BZru)
j=l

in [0, T]{lx,>O},
and make use of the fact that Ar zz vanishes on [0, T] X {1 =0}.
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