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1. Introduction. Let D be a domain in R, and let F be an open
subset of 3D, which is said to be an initial surface. We denote by 0 an
origin in R. We suppose that 0 is the interior point of F. Let L be
an elliptic operator in D, which may be nonlinear. Let u be a solution of
L(u)=0 in D. Then the ill-posed estimate in Cauchy’s problem is the fob
lowing" There are an open neighborhood U o.f 0 and two constants C,/t
with 01 such that
(1.1) U [,,gC( u[l,r)(lu ,)-,
where I (i=1, 2, 3) are some norms on F, UD and D, respectively. In
particular, I,r means some quantity of initial data of u. The investiga-
tion with respect to ill-posed estimates of linear operators is referred to
John’s work [2]. The Hadamard’s three circles theorem is close to the
estimate (1.1). With respect to the nonlinear case, V:born: [7] has proved
recently the Hadamard’s three circles theorem for nonlinear uniformly
elliptic operators.

The estimate (1.1) implies immediately the unique continuation prop-
erty, which asserts that u--0 in U D if the initial data of u vanishes on
F. For elliptic operators with linear principal parts the unique continua-
tion property was exensively studied by many authors. Let A(x, ) be a
mapping rom DR into R such that or a.e. x e R and for all e R

IA(x, )lgCII-, A(x, ).>=cl[
where c, C0 and pl. Then we consider particularly the elliptic oper-
ator L with
(1.2) L(u) div (A(x, g’u). g’u).
Recently, Martio [5] gave a counterexample of the form (1.2) such that the
unique continuation property does not hold. In his counterexample, the
function A(x, ) and u(x) are constructed skillfully under the conditions
such as p=N>_3, D:{xv0} and F:{x:0}.

When N--2, the unique continuation property holds or the operators
of (1.1) under some conditions (see e.g., [1] and [4]). However these
method can not be applied to the case of N>=3. The difficulty is originated
from the degeneration of ellipticity. Thus there arises a question" If
N_>_3, does the unique continuation property, moreover the ill-posed esti-
mate hold for degenerate quasilinear elliptic operators?

In this paper we give a partial affirmative answer for the above ques-
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tion. We proceed along the line of [2] and [6], but we yield our estimate
without using the Fourier transform.

2. Result. We write x=(xl, ., x), x’=(xl, ., x_) and y=x.
Thus x=(x’, y). In this paper we consider the operator

N

L(u) 3x,((3xU)2/1), k 0, 1, 2, ...,
i=l

which is a form of (1.2) and is a typical model of the degenerate quasi-
linear elliptic operator ,= 3(13xUl’-3,u) (see e.g., [3, Chap. 2]).

Let D and F be the same as in the previous section. We say that D is
strictly convex at O, if there is a plane u passing through O, which meets
D only at O. In this paper we impose the assumption

(A) F is o class C and D is strictly convex at O. The positive y-
axis is the ray perpendicular to and D {y0}= .

For c0 we write
Dc=D{Oyc}, Fc=F{Oyc}.

From now on we fix a positive number a such that al/2 and 3D=F U
(D{y=a.}).

Under the assumption (A) our aim is to prove

Theorem. Lt u be in C(D), and let its second derivatives be piece-
wise continuous in D. Let

L(u) I<_ g u 12+1 in D.(2.1)
Then, if

DN [y=a}

(]ul+]gu[)/dSg e
Fa

and/<=M, it holds that

u/dxCsM-/
Dal2

where C and are positive constants depending only on k and K.. Lemmas. First we prepare
Lemma 1. For any nonnegative integer k, there is a positive con-

stant c such that for X, Y e R
X[(X+Y) Y ] >, X + k O, 1, 2,

Proof. We set
f(t) (1 + t) -- t , t e R.

It is enough to prove that or kl
(3.1) f(t)c.

When t0, (3.1) is correct, since f(0)=l, f(t)O and f(t)o+ as
to +. When t0, we use the equality f(t)=f(-1-t) and we consider
the two cases of -lt0 and t -1. Then (3.1) follows immediately.
We complete the proof.

The following lemma is a slight modification of Poincar’s inequality.
The proof is elementary, so we omit it.
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Lemma 2. Let p >=l, and let u be in C(D). Then it holds that

4. Proof of our theorem. We denote by (,) the L-inner product
in D. First we set v(x’, y) exp (y). u(x’, y) for 1.

By integration by parts we have
(4.1) --(L(u), exp ((2k+1)y). v)

N-1

((v),v)
i=l

+ (exp (2k+1)2y). (3v 2v) 1, 3v(exp ((2k+ 1)2y). 3vv))
__1 (OxiV)2k+lOyv’cos (Xi,

i=1 Da

[ (3v-v) +’3v.cos (y, )dS
JDa

where n is an outernormal of 3D and (x, n), (y, n) are the angles between
x and n, y and n, respectively. On the other hand

1 (3x,V)+ cos (y, n)dS,((3v)+, 3flv)=
2(k+ 1)

and the second term on the right-hand side of (4.1) equals

((3vv-2v)+, 3v+(2k+ 1)23v).
Thus (4.1) becomes
(4.2) --(L(u), exp ((2k+l)y).3vv)=((3v--v)+1, 3v+(2k+1)3vv)+I,
where

--f (3vv-- 2v) /3vv. cos (y, )dS.
Da

Now we calculate the first term on the right-hand side of (4.2).

((Ov--2v)’/, Ov)= 2k 1 ((Ov)(_2v)+_ Ov)
j=O

Obviously

((Ov)v*- Ov)=-- 2k+1-- ((Ov),, v_)
]+1
1 V+-(OV)+ cos (y, )dS.

Since (271)(2+1-)/(+1)=(1 ), we have

((0v i)*, 0) i.=_ 2k+l+ 1 (_i)_

X ((0)*, -)-(-)*(0, *)+I,
where

First
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12= (--,V)2/l-s(3,V)s/l COS (y, n)dS.
s=0 ]+1

It becomes

((v-v)+, v) ((v)+, (-v)+-)j=O

++(v, v +’) +I.
And we have

((v v) , v)
j=O

From the above inequalities it follows that
the right-hand side of (4.1)=2(k+1)2

1 )((v) , ( v) -) (v, v)+’)
L j=0

--(2k+1)+(3vv, v+)+I+I
=2(k+1)2(3v, (3vv--2v)+--(--2v)+)+ I,

j=l

where

13 2k+ 1 21 /2 v21/ cos (y, n)dS.
2(k+l) 09

Combining this and (4.1) with Lemma 1, we conclude that

(4.3) (L(u), exp ((2k+l),y).3vv)>=2(k+l)c[,l(1, (3v)/2)-- Is.
j=l

By Cauchy’s inequality

I(L(u), exp ((2k/l),y).3vv)l<: 1 (3v)+dx
2(k+1)

2k+l exp (2(k+l)2y).]L(u)(+)/(+)dx.+ 2(k+1) De

Further we easily see that

5 Is C (v+++v+)dS,
=1

where C depends only on k. Combining these inequalities with (4.3) and
(2.1) we have

I (v)dxC,-[ v+I (v+]v)dS]Da Da

or 2 20 (0) 0). Applying Lemma 2 for p 2k+ 2, we obtain

Dal

(2(k +l)aa) f (lul+lgu[)+dS.+exp
D {y a}

Hence

u2/’dx_Cll/2 (-(k+l)2a).(+M (2(k+1)2a)).exp exp
Dal2

Taking 0 as large as desired, we note that
I[/ exp (-(k+l),a)=C exp (--3(k+1)2a/2).
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Setting = -1/(k+l) log (M/D, we obtain finally

u/dxC(s-/)M’/+s/M-(/)).
Dal2

This completes the proof.
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