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§1. Introduction. Let D be a domain in R”, and let /" be an open
subset of 9D, which is said to be an initial surface. We denote by O an
origin in R”. We suppose that O is the interior point of I'. Let L be
an elliptic operator in D, which may be nonlinear. Let u be a solution of
L(uw)=01in D. Then the ill-posed estimate in Cauchy’s problem is the fol-
lowing: There are an open neighborhood U of O and two constants C, §
with 0<<§<1 such that

a.1 [ Ulleyvap=C(lulls, )’ lls, )~
where | ||; i=1,2, 8) are some norms on I, UND and D, respectively. In
particular, || |;,» means some quantity of initial data of . The investiga-

tion with respect to ill-posed estimates of linear operators is referred to
John’s work [2]. The Hadamard’s three circles theorem is close to the
estimate (1.1). With respect to the nonlinear case, Vyborny [7] has proved
recently the Hadamard’s three circles theorem for nonlinear uniformly
elliptic operators.

The estimate (1.1) implies immediately the unique continuation prop-
erty, which asserts that =0 in UN D if the initial data of » vanishes on
I'. For elliptic operators with linear principal parts the unique continua-
tion property was extensively studied by many authors. Let A(x, &) be a
mapping from DX R” into R" such that for a.e. x ¢ R¥ and for all £ RY

|Aw, OISClEP, Az, 8)-s=cle
where ¢, C>0 and p>1. Then we consider particularly the elliptic oper-
ator L with
1.2) L(uw)=div (A(z, Fu)-Fw).
Recently, Martio [5] gave a counterexample of the form (1.2) such that the
unique continuation property does not hold. In his counterexample, the
function A(z, &) and u(x) are constructed skillfully under the conditions
such as p=N2=3, D={x,>0} and I'={x,=0}.

When N =2, the unique continuation property holds for the operators
of (1.1) under some conditions (see e.g., [1] and [4]). However these
method can not be applied to the case of N=3. The difficulty is originated
from the degeneration of ellipticity. Thus there arises a question: If
N =3, does the unique continuation property, moreover the ill-posed esti-
mate hold for degenerate quasilinear elliptic operators?

In this paper we give a partial affirmative answer for the above ques-
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tion. We proceed along the line of [2] and [6], but we yield our estimate
without using the Fourier transform.

§2. Result. We write x=(x,, - -+, xy), '=(x, - -+, Zy_y) and y=u,.
Thus z=(«',y). In this paper we consider the operator

N .
Lk(u)=z am((awiu)w“‘l)a k=0, 1) 2’ ]
i=1

which is a form of (1.2) and is a typical model of the degenerate quasi-
linear elliptic operator > ¥, d,,(0,,ul?"%,,u) (see e.g., [3, Chap. 2]).

Let D and I be the same as in the previous section. We say that D is
strictly convex at O, if there is a plane z passing through O, which meets
D only at O. In this paper we impose the assumption

(A) I is of class C' and D is strictly convex at O. The positive y-

axis is the ray perpendicular to = and DN {y<0}=g.

For ¢>0 we write

D.=DNn{0<y<e}, r'.=rn{o<y<el.
From now on we fix a positive number a such that a<1/2 and 6D,=1", U
DN{y=a).

Under the assumption (A) our aim is to prove

Theorem. Let u be in C'(D,), and let its second derivatives be piece-
wise continuous in D,. Let
@2.1) | L (w) | K|uf*+? n D.

Then, if

f (u|+|Fup*+2dS<M,
Dn{y=a}

j (ul+ Pu):dS<e
Iq
and pe<M, it holds that
J u2k+2dxécsa/2Ml-—a/2,
Daj2

where C and p are positive constants depending only on k and K.

§3. Lemmas. First we prepare

Lemma 1. For any nonnegative integer k, there is a positive con-
stant ¢, such that for X, Ye R

X[(X+Y)2k+1__Y2k+1]gckX2k+2, k=0,1,2, e,

Proof. We set

JS@) =@ t)*—t, teR.
It is enough to prove that for k=1
3.1 JS@®) =c,.

When £>0, (3.1) is correct, since f(0)=1, f(¢)>0 and f({)—+ o as
t—+oo. When t<0, we use the equality f(t)=f(—1—t) and we consider
the two cases of —1<t<0 and t<—1. Then (38.1) follows immediately.
We complete the proof.

The following lemma is a slight modification of Poincaré’s inequality.
The proof is elementary, so we omit it.
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Lemma 2. Let p=1, and let u be in C'(D,). Then it holds that
j lupde<C, a)[ f |u|pds+j 18,u |”dw].
Dg g Dg

§4. Proof of our theorem. We denote by (,) the L:-inner product
in D,. First we set v(«', y)=exp (Ay) - u(x’, y) for 1< —1.

By integration by parts we have
(4.1) —(Ly(u), exp ((2k+1)y) -9,v)

zzl ((axzv)2k+l? axiayv)
+(exp (= R2k+1)2y)- G,v—2v)***", 8,(exp ((2k+1)2y) -3,v))
—%j @,,v)**'9,v - cos (x;, n)dS
i=1 J oD,

—J @,v—2v)**19,v - cos (y, mdS,
dDg

where n is an outernormal of 6D, and (z,, n), (y, n) are the angles between
2, and n, y and n, respectively. On the other hand
(@00 8.0,9) =505 k1+1) [, @01 cos v, mas,
and the second term on the right-hand side of (4.1) equals
((@,v—20)**, v+ Rk +1)10,v).
Thus (4.1) becomes
(4.2) —(Ly(w), exp (2k+1)2y) -2,v) =((6,v — )**!, v+ 2k +1)o,v) +1,,
where

2k +2
2(k+1) l}: . 0,,v)**** cos (y, n)dS

-5 f 0.,0)**9,v-cos (&, )dS
t=1 aDg

1=

—I @,v—w)**'9,v-cos (y, n)dS.
dDg
Now we calculate the first term on the right-hand side of (4.2). First

((a,,v—m;)?"“, af,’v)———zil < 216;—1 )((ay,v)j(__l,v)wcﬂ—]’ af,’l)).

j=0

Obviously
Jng2l+1-74 2 —_— 2k+1_j J+2 2k—j
(@,v)v » 03) i (@, ) *2, v*-7)
—I—-J V199, v)*! cos (y, m)dS.
1 Jone
Since (2’““ )(2k+1 — DG+ = (%’fjll ) we have

((a v— 21))2"“ 82’1)) 2 Z (2k+1 )(_Z)Zk—j
+1
X ((0,0)*2, ¥~ ) — (=D 1(0,v, v** )+ 1,
where
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2k+1
=5 (2;&1 )_L . j (— )+-3(3 )1 cos (y, m)dS.
i=0 7+1 9Da

J
It becomes
(@01, 3 =1 3, ( 2kj+ 1 >((ayv)’“, (— Av)Peri=d)
j=0
+22k+2(ay,v, 'I)Zk+l)+12.

And we have
2k+1

(@0— )™, 3,0)= 3 (2’“;“1 )@y, (—awyeeio.

=0
From the above inequalities it follows that
the right-hand side of (4.1)=2(k+1)2

% [2%1 ( 2’0;—1 >((ay,v)j+1’ (—21))2"“")—(81,'0, (_21))2,0”)]
=0
—@k+1D)2***@,v, v** )+ 1,+1,
—2(k+1)2(3,0, 00— WP —(— P )+ 3 1,
i=1
where

A 2k+1 2k+2J~ 2% +2
I,= mz o v***% cos (y, m)dS.

Combining this and (4.1) with Lemma 1, we conclude that
3
4.3) (Li(w), exp (2k+1)2y) -9,v) Z2(k+1)c, |2, G,0)* -3 1.
J=1
By Cauchy’s inequality
1 .
(L), exp (@A) SIS 5o j . @0r+da

2k+1
2(k+1) Joa
Further we easily see that

i Ij écj (‘ ‘7”‘2k+2+u|2k+2,02k+2)d3,
Jj=1 9Dg

where C depends only on k. Combining these inequalities with (4.3) and
(2.1) we have

J‘ (ayv)2k+2dxéc‘2l—ll;[ le\:+2 +J (l V,v l2k+2+‘2l‘2k+2v2k+2)ds]
D Dy 9D
for A< —2, (1,>>0). Applying Lemma 2 for p=2k+2, we obtain
J ,I)Zk+2dx§C|zl2k+2[j (lul+|‘7ul)2k+2ds]
Dql2 Iy

+exp (2(k+1)4a) Inmy:a} (|4 | Pu)*+2ds.

+ exp (2(k+ 1)) | (o) P/ 24+,

Hence
J w*ide < ClAP*E exp (—(B+1)Aa) - (e + M exp (2(k+1)ia)).
Dalz

Taking 1, as large as desired, we note that
[A**? exp (—(k+1)2a) < C exp (—3(k+1)ia /2).
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Setting A= —1/(k+1) log (M /¢), we obtain finally

j u2k+2d9(}§ C(el—wa/z)Maa/z_l_ea/le— (a/Z)).
Daja

This completes the proof.
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