42. On the Uniform Attractivity of Solutions of Ordinary Differential Equations by Two Lyapunov Functions

By László HATVANI*)

Bolyai Institute, University of Szeged, Hungary

(Communicated by Kunihiko KODAIRA, M.J.A., May 13, 1991)

1. Introduction. Consider the ordinary differential equation (1) $x' = f(t, x) (f(t, 0) = 0 \text{ for all } t \in \mathbb{R}_+ : (0, \infty)),$ where $f : \mathbb{R}_+ \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous.

K. Murakami and M. Yamamoto [10] have given sufficient conditions for the global attractivity and equi-attractivity of the zero solution of (1) based on Lyapunov functions with negative semidefinite derivatives. Nowadays such Lyapunov functions have been often used to investigate the asymptotic behaviour of solutions [1-16].

As is well-known, the uniform stability properties are of practical importance, e.g. if f satisfies a Lipschitz condition in x uniformly with respect to t, then the uniform attractivity together with uniform stability imply the total stability of the zero solution (see [12], Chapter II, Theorem 4.5).

In this paper we show that, after slightly strenthening one of them, the conditions in Murakami's and Yamamoto's theorem of the global equiattractivity (Theorem ¹ in [10]) imply also the global uniform attractivity. In our second theorem we can guarantee the global equi-attractivity under essentially weaker conditions than those of Murakami's and Yamamoto's theorem on the global attractivity (Theorem 2 in [10]).

2. Notations and definitions. We use the n -dimensional real space \mathbb{R}^n with the Euclidean norm $|\cdot|$. If $x \in \mathbb{R}^n$, $F \subset \mathbb{R}^n$, we define the distance between x and F by $d(x, F) := inf\{|x-y|: y \in F\}$. $B(\rho)$ and $\overline{B}(\rho)$ denote the ball of radius $\rho > 0$ around the origin and its closure, respectively.

Definition 1. A measurable function $\varphi: \mathbb{R}_+ \rightarrow \mathbb{R}_+$ is said to be *integrally* $positive\text{ if }\int_I\varphi(s)\,ds=\infty\text{ for every set }$

(2) $I = \bigcup_{k=1}^{\infty} [\alpha_k, \beta_k], \qquad \beta_k - \alpha_k \geq \delta > 0 \ (k \in \mathbb{N}).$ If, in addition to (2), the inequalities $1 \geq \beta_k - \alpha_k$ ($k \in N$) are also required of

I, then φ is called *weakly integrally positive* [3].

It is easy to see that φ is integrally positive if and only if

$$
(3) \qquad \liminf_{t \to \infty} \int_{t}^{t+r} \varphi(s) ds > 0
$$

for every $\gamma > 0$. Moreover, if φ is integrally positive, then it is weakly integrally positive, but the converse is not rue (e.g. $\varphi(t) := (1 + t)^{-1}$). One of the purposes of this paper is to emphasize that the weak integral positivity

This research was supported by the Hungarian Foundation for Scientific Research with grant number 6032/6319.

can often substitute for the integral positivity to guarantee non-uniform stability properties [3, 4].

In the assumption on the derivative of the Lyapunov function we will use a continuous function $V^*: \mathbb{R}^n \to \mathbb{R}_+$. Following Murakami and Yamamoto, we denote by $E(V^*=0)$ the zero set of V^* , and introduce the following notations:

$$
S(\rho):=\{x\in \mathbf{R}^n:\, d(x,E(V^*=0))<\rho\}\qquad (\rho>0)\\ A(\rho_1,\rho_2):=B(\rho_2)\setminus\overline{B}(\rho_1)\,;\, H(\rho_1,\rho_2):=S(\rho_2)\setminus\overline{S}(\rho_1)\qquad(0<\rho_1<\rho_2).
$$

Definition 2. A function $Z: \mathbb{R}_+ \times \mathbb{R}^n \to \mathbb{R}$ is said to be strictly non-zero in the set $E(V^*=0)$ if for every γ , $\Gamma(0<\gamma<\Gamma)$ there are a number $r(\gamma,\Gamma)$ >0 and a measurable function $\xi_{r,r}: \mathbf{R}_{+} \to \mathbf{R}_{+}$ with

(4)
$$
\lim_{R\to\infty}\int_t^{t+R}\xi_{r,\Gamma}(s)ds=\infty \qquad (t\in R_+),
$$

and such that Z does not change its sign and $|Z(t, x)| \geq \xi_{r,r}(t)$ on the set $\mathbf{R}_{+}\times A(r,\Gamma)\cap S(r(r,\Gamma)).$

If (4) is satisfied uniformly with respect to $t \in \mathbb{R}_+$, then Z is called uniformly strictly non-zero in $E(V^*=0)$.

If $\xi_{r,r}$ is integrally positive (respectively, $\xi_{r,r}(t)$ = const.), then Z is called definitely non-zero in the integral sense (respectively, definitely non-zero) in $E(V^*=0).$

For $t \in \mathbb{R}_+$, $x_0 \in \mathbb{R}^n$ we denote by $x(t; t_0, x_0)$ any solution of (1) with $x(t_0; t_0, x_0) = x_0.$

Definition 3. The zero solution of (1) is said to be globally attractive if $|x(t; t_0, x_0)| \to 0$ as $t \to \infty$ for all $t \in \mathbb{R}_+$, $x_0 \in \mathbb{R}^n$. It is globally equi-attractive if the convergence is uniform with respect to $x_0 \in B(\sigma)$ for every $\sigma > 0$. If the convergence is uniform with respect to $t_0 \in \mathbb{R}_+$, too, then the zero solution is called globally uniformly attractive.

We denote by $C_0(x)$ the family of continuous functions $V: \mathbb{R}_+ \times \mathbb{R}^n \rightarrow \mathbb{R}$ which satisfy a Lipschitz conditions with respect to x. For a $V \in C_0(x)$ we define the derivative of V with respect to (1) (see [15]) by

 $\lim_{h\to 0+} \sup \{ (1/h) [V(t+h, x+h f(t, x)) - V(t, x)] \}.$

 \mathcal{K} denotes the class of continuous functions $a: \mathbb{R}_+ \rightarrow \mathbb{R}_+$ which are strictly increasing and vanishing at zero.

The results. Theorem 1. Suppose that there are functions V, $W \in$ $C_0(x)$ satisfying the following conditions in the set $\mathbf{R}_+ \times \mathbf{R}^n$:

1) $a(|x|) \le V(t, x) \le b(|x|)$, where a, $b \in \mathcal{K}$, and $a(r) \to \infty$ as $r \to \infty$;

2) $V'(t, x) \leq -\varphi(t)V^*(x)+\psi(t)$, where $V^*: \mathbb{R}^n \rightarrow \mathbb{R}_+$ is continuous, φ is integrally positive, and $\psi : \mathbf{R}_{+} \to \mathbf{R}_{+}$ is integrable over \mathbf{R}_{+}
3) there exists an L such that $|W(t, x)| \leq L$;

3) there exists an L such that $|W(t, x)| < L$;

4) W'(t, x) is uniformly strictly non-zero in the set $E(V^*=0)$;

5) for any compact set $M \subset \mathbb{R}^n$ and for any locally absolutely continuous function $u: \mathbf{R}_{+} \to M$, the function $\int_{s}^{t} f(s, u(s)) ds$ is uniformly continuous on \mathbf{R}_{+} .

Then the zero solution of (1) is uniformly globally attractive. *Proof.* It can be devided into eight steps:

 1° The zero solution is eventually uniformly stable [15], i.e. for every $\varepsilon > 0$ there are $\zeta_1(\varepsilon), \delta(\varepsilon) > 0$ such that $[t \ge t_0 \ge \zeta_1, |x_0| < \delta(\varepsilon)]$ imply $|x(t; t_0, x_0)| < \varepsilon$.

In fact, consider the function $U(t, x) := V(t, x) + \int_{t}^{\infty} \psi$. By condition 2), U is nonincreasing along any solution x ; therefore, we have the inequality

$$
a(|x(t)|)+\int_t^\infty\psi\leq U(t,\,x(t))\leq U(t_{\scriptscriptstyle 0},\,x_{\scriptscriptstyle 0})\leq b(|x_{\scriptscriptstyle 0}|)+\int_{t_{\scriptscriptstyle 0}}^\infty\psi
$$

for all $t\!\geq\!t_{\scriptscriptstyle 0}.$ Let $\zeta_{\scriptscriptstyle 1}(\varepsilon)$ be chosen so that $\int\limits_0^\infty\psi\!<\!a(\varepsilon)\!/\!2$, and let $\delta(\varepsilon)$ If $t_0 \geq \zeta_1$ and $|x_0| < \delta$, then $a(|x(t)|) < a(\varepsilon)$ and, consequently, $|x(t)| < \varepsilon$ for all $t\geq t_0$.

2° The solutions are uniformly bounded [15], i.e. for every $\sigma > 0$ there is a $\Gamma(\sigma)$ such that $[t \geq t_0 \geq 0, |x_0| \leq \sigma]$ imply $|x(t; t_0, x_0)| \geq \Gamma(\sigma)$.

In fact, for any solution x with $|x_0| \leq \sigma$ we obtain $a(|x(t)|) \leq U(t, x(t)) \leq$ $b(\sigma)+\int_0^\infty \psi$, so the choice $\Gamma(\sigma):=a^{-1}(b(\sigma)+\int_0^\infty \psi)$ is suitable.

 3^{30} In order to prove the assertion of the theorem we have to show that
for every $\sigma > 0$, $\eta > 0$ there is a $T(\sigma, \eta)$ such that if $|x_0| < \sigma$, then $|x(t)$, $t_0, x_0| < \eta$
for all $t \in \mathbf{R}$, $t > t + T(\sigma, \eta)$. In the cons for all $t_0 \in \mathbb{R}_+$, $t \geq t_0 + T(\sigma, \eta)$. In the consequence of the eventual uniform stability of the zero solution (see 1°), to this end it is enough to prove the existence of $T(\sigma,\eta)$ and $t_* \in [t_0, t_0+T(\sigma,\eta)]$ with the properties $t_* \geq \zeta_i(\eta)$,

 $|x(t_*)| < \delta(\eta)$.
Let $\sigma > 0$, $\eta > 0$ be fixed. Suppose that $t_0 \geq \zeta_1(\eta)$, $|x_0| < \sigma$ and $|x(t; t_0, x_0)|$ $\geq \delta(\eta)=:\tilde{\tau}(\eta)=\tilde{\tau}$ for all $t \in [t_0, t_0+T_*]$ i.e. $x(t) \in A(\tilde{\tau}(\eta), \Gamma(\sigma))$ on the interval $[t_0, t_0 + T_*].$ Consider the number $r = r(r(\eta), \Gamma(\sigma))$ and the function $\xi = \xi_{r(\eta), \Gamma(\sigma)}$ corresponding to the function $W(t, x)$ in the sense of condition 4) and Definition 2.

4° There exists an upper bound $T_1=T_1(\sigma, \eta)$ for the length of any interval of time $[\alpha, \beta] \subset [t_0, t_0 + T_*]$ while the point $x(t) = x(t; t_0, x_0)$ can be staying in $S(r)$.

In fact, by (4) there is a $T_1 = T_1(\sigma, \eta)$ such that

$$
\int_{t}^{t+T_1} \xi_{\tau(\eta),\Gamma(\sigma)}(s) ds > 2L \quad \text{for all } t \in R_+.
$$

Since

$$
2L \geq |W(\alpha, x(a)) - W(\beta, x(\beta))| \geq \left| \int_a^{\beta} W'(t, x(t)) dt \right| \geq \int_a^{\beta} \xi(s) ds,
$$

the inequality $\beta-\alpha < T_1$ has to be satisfied.

5° There exists an upper bound $T_2=T_2(\sigma, \eta)$ for the length of any interval of time $[\alpha, \beta] \subset [t_0, t_0 + T_*]$ of staying out of $S(r/2)$.

Let

$$
m_1=m_1(\sigma,\eta):=\min\{V^*(x):\ x\in\overline{B}(\Gamma)\backslash S(r/2)\}.
$$

Then

$$
b(\sigma)+\int_0^{\infty}\psi\geq U(\alpha)-U(\beta)\geq\int_{\alpha}^{\beta}\varphi(t)V^*(x(t))dt\geq m_1\int_{\alpha}^{\beta}\varphi.
$$

By property (3), the existence of $T_2(\sigma, \eta)$ follows from the integral positivity of φ .
6°

There exists a positive lower bound $T_3=T_3(\sigma, \eta)$ for the transit time while $x(t)$ is crossing $H(r/2, r)$.

If $x(\alpha) \in \overline{S}(r/2)$ and $x(\beta) \notin S(r)$, then $r/2 \leq |x(\alpha)-x(\beta)| = \left|\int_{\alpha}^{\beta} f(t, x(t)) dt\right|$. By condition 5), there is a $T_3 = T_3(\sigma, \eta)$ such that $|\alpha - \beta| < T_3$ implies $|x(\alpha) - \beta|$ $|x(\beta)| < r/2$. This T_i is suitable for the desired lower bound.

7° There is an upper bound $M = M(\sigma, \eta) \in N$ for the number of crossing $H(r/2, r)$.

In fact, introducing the notation

$$
m_2=m_2(\sigma,\eta):=(1/2)\liminf_{t\to\infty}\int_t^{t+Ts(\sigma,\eta)}\varphi(s)\,ds
$$

we have

$$
\int_t^{\iota+T_3}\varphi\!\geq\!3m_2/2,\quad \int_t^\infty\psi\!<\!m_1m_2/2
$$

for $t \geq \zeta_2$ with some sufficiently large $\zeta_2 = \zeta_2(\sigma, \eta) \geq \zeta_1(\sigma, \eta)$.

Since $U'(t, x(t)) \leq -\varphi(t)V^*(x(t))$, the function $U(t, x(t))$ decreases at least by $m_1 m_2$ while $x(t)$ is crossing $H(r/2, r)$ after ζ_2 . But $U(t, x(t))$ is decreasing and $0 \le U(t, x(t)) \le b(\sigma) + \int_{0}^{\infty} \psi$ in the whole interval $[t_0, \infty)$, so $x(t)$ can cross $H(r/2, r)$ in $[\zeta_2, \infty) \cap [t_0, t_0 + T_*]$ at most

$$
M\!=\!M(\sigma,\eta)\!:=\!\mathfrak{l}\!\left(b(\sigma)\!+\!\int_0^\infty\psi\right)\!\Big/\,m_1m_2\mathfrak{l}\!+\!2
$$

times, where [s] denotes the integral part of $s \in \mathbb{R}$.

8° Define now the number

 $T(\sigma, \eta) := \zeta_2(\sigma, \eta) + (M(\sigma, \eta) + 1) (T_1(\sigma, \eta) + T_2(\sigma, \eta)).$

It is easy to see that $T_* \langle T(\sigma, \eta),$ i.e. $x(t)$ cannot remain in the annulus $A(\Upsilon(\eta), \Gamma(\sigma))$ longer than $T(\sigma, \eta)$. This means that there is a $t_* \in [t_0, t_0 +$ $T(\sigma,\eta)$] with $|x(t_*)| \leq \tilde{r}(\eta)$, and, by the definition of $\tilde{r}(\eta)$, $|x(t)| \leq \eta$ for all $t \geq t_{\text{o}} + T(\sigma, \eta).$

The proof is complete.

The following theorem can be proved similarly.

Theorem 2. Suppose that there are functions $V, W \in C_0(x)$ satisfying the following conditions in the set $R_+ \times R^n$:

1) $a(|x|) \le V(t, x)$, where $a \in \mathcal{K}$ and $a(r) \rightarrow \infty$ as $r \rightarrow \infty$;

2) $V'(t, x) \leq -\varphi(t)V^*(x)+\psi(t)$, where $V^*: \mathbb{R}^n \rightarrow \mathbb{R}_+$ is continuous, φ is weakly integrally positive, and $\psi: \mathbb{R}_+ \rightarrow \mathbb{R}_+$ is integrable over \mathbb{R}_+ ;

weakly integrally positive, and $\psi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ is integrable over \mathbb{R}_+ ;
3) for every γ , Γ (0< γ < Γ) there is a function $c = c_{r,\Gamma} \in \mathcal{K}$ such that $|W(t, x)| \le c(d(x, E(V^*=0)))$ $(t \in R_*, x \in A(\gamma, \Gamma));$

4) W'(t, x) is definitely non-zero in the integral sense in the set $E(V^*)$ $=0$):

5) for any compact set $M\subset \mathbb{R}^n$ and for any locally absolutely continuous function $u: \mathbf{R}_{+} \to M$, the function $\int_{a}^{t} f(s, u(s)) ds$ is uniformly continuous in R_{+} .

Then the zero solution of (1) is globally equi-attractive.

4. Remarks. 1. In Theorem 1 of [10] the function $W'(t, x)$ was supposed to be only strictly non-zero in the set $E(V^*=0)$, but only global equiattractivity was proved. It is worth noticing that this result can be deduced also from localization theorems [2, 3, 8, 12].

In fact, from Corollary 3.2 in [2] it follows that $x(t) \rightarrow E(V^*=0)$ as $t\rightarrow\infty$ for every solution x. On the other hand, since W is bounded and W' is strictly non-zero, for every γ , Γ (0 \ll γ \ll Γ) there is an $r = r(\gamma, \Gamma) > 0$ such that the point $x(t)$ cannot remain in the set $A(\gamma, \Gamma) \cap S(\gamma)$ for a long time. These facts yield $x(t) \rightarrow 0$ $(t \rightarrow \infty)$ due to the eventual uniform stability of the zero solution (see step 1° in the proof of Theorem 1).

2. If in condition 2) in Theorem ¹ we require only the weak integral positivity of φ instead of the integral positivity, then we can guarantee only global equi-attractivity.

3. If $\psi(t)\equiv 0$ in condition 2) in Theorem 1 (Theorem 2), then the zero solution of (1) is globally uniformly asymptotically stable (globally equiasymptotically stable, respectively) (as for the definitions see e.g. $[6]$).

4. In $[10]$, instead of our 5), the following condition was required: for any compact set $M \subset \mathbb{R}^n$ there are a number N and a function r such that $\int_{t}^{t+1} r \to 0$ $(t \to \infty)$ and $|f(t, x)| \le N + r(t)$ for all $t \in \mathbb{R}_+$, $x \in M$. It can be seen that this condition implies our condition 5), but the converse is not true.

5. Our Theorem 2 improves and sharpens that of [10]: in [10] φ was integrally positive and W' was definitely non-zero in $E(V^*=0)$; nevertheless, only the global attractivity was guaranteed.

References

- [i] T. A. Burton: An extension of Liapunov's direct method. J. Math. Anal. Appl., 28, 545-552 (1969) 32, 681-691 (1970).
- [2] L. Hatvani: Attractivity theorems for nonautonomous systems of differential equations. Acta Sci. Math., 40, 271-283 (1978).
- [3] -- : A generalization of BarbashinKrasovskij theorems to partial stability in nonautonomous systems. Colloquia Math. Soc. J. Bolyai, 30. Qualitative Theory of Differential Equations, Szeged, pp. 381-409 (1979).
- [4] ---: On partial asymptotic stability and instability. III (Energy-like Lyapunov functions). Acta Sci. Math., 49, 157-167 (1985).
- [5] J. Kato.: Liapunov's second method in functional differential equations. Tohoku Math. J., (2) 32, 487-497 (1980).
- [6] V. Lakshmikantham and S. Leela: Differential and Integral Inequalities. Academic Press, New York-London (1969).
- [7] V. Lakshmikantham and Xinzhi Liu: On asymptotic stability for nonautonomous differential systems. Nonlinear Anal., 13, 1181-1189 (1989).
- [8] J. P. LaSalle: Stability of nonautonomous systems, ibid., l, 83-91 (1976).
- [9] V. M. Matrosov: On the stability of motion. J. Appl. Math. Mech., 26, 1337–1353 (1962).
- [10] K. Murakami and M. Yamamoto: On the asymptotic property of the ordinary

differential equation. Proc. Japan Acad., 64A, 373-376 (1988).

- [11] S. Murakami: Stability of a mechanical system with unbounded dissipative forces. Tohoku Math. J., (2)36, 401-406 (1984).
- [12] N. Rouche, P. Habets and M. Laloy: Stability Theory by Liapunov's Direct Method. Springer-Verlag, New York (1977).
- [13] L. Salvadori: Famiglie ad un parametro di funzioni di Liapunov nello studio della stabilitá. Sympos. Math., 6, 309-330 (1971).
- [14] J. Terjéki: On the exponential stability and power-asymptotic stability of the solutions of functional differential equations (preprint).
- [15] T. Yoshizawa: Stability Theory by Liapunov's Second Method. The Mathematical Society of Japan, Tokyo (1966).
- [16] Attractivity in nonautonomous systems. Internat. J. Non-Linear Mech., 20, 519-528 (1985).