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1. Introduction. Consider the ordinary differential equation
( 1 ) x’=f(t, x) (f(t, 0)-0 for all t e R/ "=[0, co)),
where f "R/ R--R is continuous.

K. Murakami and M. Yamamoto [10] have given sufficient conditions
for the global attractivity and equi-attractivity of the zero solution of (1)
based on Lyapunov functions with negative semidefinite derivatives. Nowa-
days such Lyapunov functions have been often used to investigate the
asymptotic behaviour of solutions [1-16].

As is well-known, the uniform stability properties are of practical im-
portance, e.g. if f satisfies a Lipschitz condition in x uniformly with respect
to t, then the uniform attractivity together with uniform stability imply the
total stability of the zero solution (see [12], Chapter II, Theorem 4.5).

In this paper we show that, after slightly strenthening one of them,
the conditions in Murakami’s and Yamamoto’s theorem of the global equi-
attractivity (Theorem 1 in [10]) imply also the global uniform attractivity.
In our second theorem we can guarantee the global equi-attractivity under
essentially weaker conditions than those of Murakami’s and Yamamoto’s
theorem on the global attractivity (Theorem 2 in [10]).

2. Notations and definitions. We use the n-dimensional real space
R with the Euclidean norm I. ]. If x e R, FcRn, we define the distance
between x and F by d(x, F)’=inf{Ix-y y e F}. B(p) and B(p) denote the
ball of radius p>0 around the origin and its closure, respectively.

Definition 1. A measurable function 9" R/-R+ is said to be integrally

positive if | (s)ds= oo for every set
dI

(2) I [_);=1 [c,.,/9,], fl--c>_3>O (keN).
If, in addition to (2), the inequalities z/_>fl-a (k e N) are also required of
I, then 9 is called weakly integrally positive [3].

It is easy to see that 9 is integrally positive if and only if

(3) limt-iIff--[:+r (s)ds>O
for every ’>0. Moreover, if 9 is integrally positive, then it is weakly
integrally positive, but the converse is not rue (e.g. 9(t) "-(1 + t)-9. One of
the purposes of this paper is to emphasize that the weak integral positivity
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can often substitute for the integral positivity t guarantee non-uniform
stability properties [3, 4].

In the assumption on the derivative of the Lyapunov function we will
use a continuous function V*:Rn--+R/. Following Murakami and Yama-
moto, we denote by E(V* =0) the zero set of V*, and introduce the following
notations"

S(p) :={x e Rn: d(x, E(V*=O))<p}
A(pl, p.) B (p.) \B(pl) H(pl, p2) S (p2) \ S (pl)

Definition 2. A function Z" R+ XRR is said to be strictly non-zero
in the set E(V*=0) if for every r, F (0rF) there are a number r(r,
0 and a measurable function ,r: R+R+ with

( ) lim ,r()g= (t

and such ha N does no change is sign and IZ(t, )l,r(t) on

R+ XA (r, F) S(r(r, F)).
If (4)is satisfied uniformly with respect to t e R+, then Z is called

uniformly strictly non-zero in E(V* =0).
If ,r is integrally positive (respectively, r,r(t)=const.), then Z is called

definitely non-zero in the integral sense (respectively, definitely non-zero)in
E(V* =0).

For t e R+, x0 e R we denote by x(t; to, Xo) any solution of (1) with
x(t0 t0, xo)

Definition 3. The zero solution of (1) is said to be globally attractive
if Ix(t; t0, x0)0 as to for all t e R+, x0 e R. It is globally equi-attractive
if the convergence is uniform with respect to x0 e B(a) for every a0. If
the convergence is uniform with respect to t0 e R+, too, then the zero solu-
tion is called globally uniformly attractive.

We denote by Co(x) the family of continuous functions V:R+ XRoR
which satisfy a Lipschitz conditions with respect to x. For a V e Co(x) we
define the derivative of V with respect to (1) (see [15]) by

lim sup {(1/h)[V(t+ h, x+hf(t, x))-- V(t, x)]}.
h0+

denotes the class of continuous functions a: R+oR+ which are
strictly increasing and vanishing at zero.

The results. Theorem 1. Suppose that there are functions V, W e
Co(x) satisfying the following conditions in the set R+ X R:

1) a(xJ)V(t,x)b([x[), where a, b e, and a(r)o asr
2) V’(t, x)--(t)V*(x)+9(t), where V* RoR+ is continuous, is

integrally positive, and " R+R+ is integrable over R+
3) there exists an L such that W(t, x)JL
4) W’(t, x) is uniformly strictly non-zero in the set E(V*=0);
5) for any compact set McR and for any locally absolutely continu-

function u" R+M, the function f(s, u(s))ds is uniformly continuousOU8

on R+.
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Then the zero solution of (1) is uniformly globally attractive.
Proof. It can be devided into eight steps"
1 The zero solution is eventually uniformly stable [15], i.e. or every

0 there are (e), ()0 such that [tto_, Ix01(D] imply Ix(t; to, Xo)l

In act, consider the function U(t, x)"= V(t, x)+l". . By condition 2),
U is nonincreasing along any solution x; therefore, we have the inequality

a(Ix(t)l)+; U(t, x(t))_ U(to, Xo)_b(Ixo])+:
lor all tto. Let () be chosen so that Iy<a(D/2, and let (e)
If t0 and Ix01, then a(]x(t)l)a(D and, consequently, Ix(t)l for all
t>_to.

2 The solutions a.re uniformly bounded [15], i.e. for every a0 there
is a F(a) such that [t_>t00, Ixola] imply Ix(t; to, xo)l_F(a).

In fact, for any solution x with IXoia we obtain a(Ix(t)l) U(t, x(t))

b()+; , so the choice F()’=a-(b()+)is suitable.

3 In order to prove the assertion o the theorem we have to show that
for every a0,0there is a T(a, ]) such that if Ixola, then Ix(t to,
or all to e R/, tto+T(a,]). In the consequence of the eventual uniform
stability oi the zero solution (see 1), to this end it is enough to prove the
existence of T(a,]) and t, e [to, to+T(a,])] with the properties t,___(]),

Let a0, ]0 be fixed. Suppose that t0_(]), IXola and Ix(t; to, Xo)]
_(])= ’(])=" for all t e [to, to+ T,] i.e. x(t) e Aff(]), F(a)) on the interval
[to, to+ T,]. Consider the number r=rff(]), F(a)) and the unction
corresponding to the function W’(t, x) in the sense of condition 4) and
Definition 2.

4 There exists an upper bound T=T(a, ]) or the length of any
interval of time [a, fl][t0, to+ T,] while the point x(t)=x(t;to, Xo) can be
staying in S(r).

In act, by (4) there is a T T(a, ) such that

t+T
r(),F(a)(S)de>2L for all t e R/.

Since

2L:>IW(, x(a))--W(, x()),_ If: W’(t, x(t))dt :>: (s)ds,

the inequality fl--a T, has to be satisfied.
5 There exists an upper bound T=T(a, ]) for the length of any

interval of time [a, fl] [to, to+ T,] of staying out of S(r/2).
Let

m=m(a, ]) =min{V*(x) x e B(F)\S(r/2)}.
Then

b(a)+

_
U()- U()--2 (t)V*(x(t))dtm fl "



No. 5] Uniform Attractivity of Solutions 165

By property (3), the existence of T(a, ]) follows from the integral positivity
of .

6 There exists a positive lower bound T=T(, ) for he ransi ime
while z(t) is crossing H(/2, ).

If (o0 e S(r/) and (?) S(r), then r/.<_l(o0-()i= f(t, (t))dt
By condition g), there is a T= T(a, ) such that Io-- 1<T implies l(o0--
()i<r/.. This T is suitable for the desired lower bound.

7 There is n upper bound M M(e, r) e N for the number o crossing

H(r/2, r).
In fact, introducing the notation

tt+

Ta(a,)

m m2(a 2) (1/2) lim inf (s) ds

we have

p_>3m2/2, <m,m/2
for t> with some sufficiently large 2=(a, 0>(a, ).

Since U’(t,x(t))<_-(t)V*(x(t)), the function U(t,x(t)) decreases at
least by mm while x(t) is crossing H(r/2, r) after . But U(t, x(t)) is de-

creasing and O<U(t, x(t))<b(a)+l[ in the whole interval [to, c), so x(t)

can cross H(r/2, r) in [2, c) f3 [to, to+ T,] at most

M=M(a, 7) "=[(b(a)+[ )/mlm2]+2
times, where [s] denotes the integral part of s e R.

8 Define now the number
T(a, ]) =2(a, ])+(M(a, ]) +1) (TI(a, ])+ T2(a, 2)).

It is easy to see that T,<T(a, 0, i.e. x(t) cannot remain in the annulus
AO’(), F(a)) longer than T(a, v). This means that there is a t, e [to, to+
T(a,])] with lx(t.)l<’(]), and, by the definition of ’(2), lx(t)l< for all
t to+ T(a, 7)"

The proof is complete.
The following theorem can be proved similarly.

Theorem 2. Suppose that there are functions V, W e Co(x) satisfying
the following conditions in the set R/ R

1) a(lxl)_V(t,x), where a e j and a(r)-+c as r-c
2) V’(t,x)--(t)V*(x)W(t), where V*" Rn-R/ is continuous, is

weakly integrally positive, and " R/-R+ is integrable over R/
3) for every ’, F (OF) there is a function c=c,r e Jf such that

[W(t, x)lgc(d(x, E(V*--0))) (t e R/, x e A0", F))
W’(t, x) is definitely non-zero in the integral sense in the set E(V*4)

=0);
5) for any compact set MR and for any locally absolutely continu-

function u" R+-+M, the function Ii f(s, u(s))ds is uniformly continuouson8

in R/.
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Then the zero solution o/ (1) is globally equi-attractive.
4. Remarks. 1. In Theorem 1 o [10] the function W’(t, x) was sup-

posed to be only strictly non-zero in the set E(V* =0), but only global equi-
attractivity was proved. It is worth noticing that this result can be deduced
also from localization theorems [2, 3, 8, 12].

In fact, rom Corollary 3.2 in [2] it ollows that x(t)--+E(V*=O) as
t-oo or every solution x. On the other hand, since W is bounded and W’
is strictly non-zero, for every 7, F (07F) there is an r--r(7, F)O such
that the point x(t) cannot remain in the set A(, F) S(r) or a long time.
These facts yield x(t)-+O (t--oo) due to the eventual uniform stability of
the zero solution (see step 1 in the proof of Theorem 1).

2. If in condition 2) in Theorem 1 we require only the weak integral
positivity of p instead of the integral positivity, then we can guarantee
only global equi-attractivity.

3. If (t)----0 in condition 2) in Theorem I (Theorem 2), then the zero
solution of (1) is globally uniformly asymptotically stable (globally equi-
asymptotically stable, respectively) (as or the definitions see e.g. [6]).

4. In [10], instead o our 5), the 2ollowing condition was required:
or any compact set McR there are a number N and a function r such
that r-+0 (t-+oo) and If(t, x)l<_N+r(t) or all t e R+, x e M. It can be

seen that this condition implies our condition 5), but the converse is not
true.

5. Our Theorem 2 improves and sharpens that of [10]" in [10] was
integrally positive and W’ was definitely non-zero in E(V*--O); neverthe-
less, only the global attractivity was guaranteed.
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