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1o Let F be a field and let F be a (fixed) algebraic closure of F. An
extension field K of F (F_KF) will be said to be a Galois quaternion ex-
tension of F if KIF is a Galois extension and its Galois group Gal (K/F) is
isomorphic to the quaternion group of order 8.

Theorem. Let F be a field of the characteristic = 2 and let F(/)
(m F =-{xlx e F}) be a quadratic extension of F.

Suppose,
m is a sum of 3 non-zero squares in F" m p/q/r p, q, r e F,()

pqr-O,
(ii)
()
Let

n--p +q F,
mn F.

--/ mn (/-+/-)(/-+p) e
where we choose mn=.

Then K F(w) is a Galois quternion exteion of F.
Proof. Let M=F(J,) be a bicyclic biquadratic extension of F

nd let Gal (M/F)={ao=I, a, a, a} where ao= lz (the identity),. (J,) >(-J, ),. (,) (_, -).
Let K=M() ( e M) and let a" KoF (i=0,1,2,3) denote any (but fixed once
for all) embeddings of K into F which extend a (i=0, 1, 2, 3) respectively.

Now, calculating

(w,) ( md(+)(+p)), 0, 1, 2, 3)
we have

c0 we0 coal o) el
r

’-’- /--P e, a’ a e
r q q

where e.= 1 (i=0, 1, 2, 3) are the signs depending on a (i=O, 1, 2, 3) re-
spectively. Since, as seen from the above calculations, w (i=0, 1, 2, 3) are
all in K or any extension a" KF of a (i=0, 1, 2, 3), it follows that K=
M(w) is Galois extension of F and a (i=0, 1, 2, 3) are automorphisms of K
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over F. Then, simple calculations show that
a [M (--the restriction o

and

=- (i---0, 1, 2, 3)
from which it ollows that w M, [K: F] =8. Hence, K=M(w) is a Galois
extension of F with degree [K: F] =8.

Now, it is easily verified that
(i 1, 2, 3)=1, 1, M=

Let =a0 be defined by w’=-w. Then, as seen rom the above,

are different automorphisms of K over F, whence
Gal (K/F): 1, , , ,,,,.

Replacing by ,3 if necessary, we may suppose all e 1 (i 1, 2, 3). Then,
it ollows by calculations that

1 (1) (i 1,2,3)i K

(i 1,2,3)
12 3 23 1 31 2

(aa2 is defined by (x)""=(x") for x e K)

These relations show ha he Galois roup l(K/) is isomorphic o he
quaernio roup o order 8.

ially, since we ea veriy or ay

2. e and Z deoe the rational umber field ad
ineers respectively. em Z be a squareree ieer.
here exists a Galois quaerio extension
hen m is a sum o g squares i (hence, (4) is a real quadratic field).

m0 be a squareree positive ieer. y
Gauss ([2], [4]), m is a sum o (a mos) g squares i Z i ad oly i ml,
2, g, , 6 rood. 8 and i is also known ha
and oly i m is o divisible by ay prime umbergrood. 4.

oreover, m is a sum o g squares i Z (or 2 squares i Z) i ad oly
i m is a sum o g squares i (or 2 squares in ). (e. [4], chap. IV,
Appendix).
o () be a real quadraie field where m is squareree ad m4,

rood. 8.
Case i). Suppose ha

m=++, , ,0 i Z
and m is o a sum o 2 squares i Z.
square ad m is no either. In ae, i m=l, he m=(m/1)+(m/1)
+m Z +Z, a contradiction.
Case ii). Suppose ha

m=+, ,0 i Z.
I we se =m+1=+ +1, he 2,
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square. Moreover, mn is not a square. For, if mn is a square then there
exists a prime number t such that tim, tlmn. Since m is squareree, t
must divide n. But, this implies t l(m, n)--1, a contradiction.

We set

o=/mn(/-+/)(/-+p) in the Case i),

o-- // mn (/+/--)(/+p) in the Case ii).

Then, it ollows rom the theorem in I that
K--Q(o)(_Q(J, /W)_Q(/))

is a Galois quaternion extension of Q.
Examples i) m=3 1+1:+1" 1 1,n= + =2, ran=6.

ii) m=5=1+2’, n=m+l=6, ran=30.

K--Q(/-(/-+ /-6-)(/--+ 1)).
iii) m---10=1:-t-3:, n=m+l-11, mn=110.

K--Q(/110 (/--/)(/N+ 1)).
3. Let p>2 be a prime number. Let Q and Z denote the p-adic

number field and the ring of p-adic integers. As is well known, there exist
exactly 3 quadratic extensions ot Q (in a fixed algebraic closure of Qv)

Q(/-), Q(/-), Q(/-)
where u is a p-adic unit such that (u/p)=- 1.

From the theorem o Witt ([5]), there exists a Galois quaternion exten-
sion o Q it and only i p---3 rood. 4.

For p3 rood. 4, p is a sum of 3 squares, but it is not a sum of 2 squares
in Q.

Now, or any a e Z (p 2), a is a sum o 3 squares (or 2 squares) in Q,
if and only if a is a sum of 3 squares (or 2 squares) in Z ([3], Th. 34).
Hence, for p_--__3 mod. 4, p is a sum of 3 squares in Z, but it is not a sum .o
2 squares in Z.

Assume p-----3 mod. 4 and set m--p=a--b+c, a, b, c e Z. Then, rom
the facts mentioned above, abe0, n=a + b Q. Moreover, since (- l/p)
=-1, it ollows that a+b0mod, p, i.e., a+b is a p-adic unit, rom
which mn--p(a+b) Q. Hence, it ollows from theorem in I that

K--Q(//mn(/+/-)(/--t-a)) (p--3 mod. a)
(m--p--a+b+c, n---:-a+b in Z)

is a Galois quaternion extension o Q.
Since a Galois quaternion extension contains exactly 3 quadratic subex-

tensions and Q(/-), Q(j-L-), Q(/ p) are all quadratic extensions of
Q (we may take u=-1 for p=3 mod. 4), K contains these 3 quadratic ex-
tensions of Q.

lxamples, i) m--p=3---l--l-t-1, n--1+1--2, ran-6.

K--Q,(/--(/-+/-)(/-+ 1)).
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