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(Communicated by Shokichi IYANAGA, M. J. A., March 12, 1990)

1. Let F be a field and let ¥ be a (fixed) algebraic closure of F. An
extension field K of F (FCKCF) will be said to be a Galois quaternion ex-
tension of F' if K/F is a Galois extension and its Galois group Gal(K/F) is
isomorphic to the quaternion group of order 8.

Theorem. Let F be a field of the characteristic %2 and let F(y/m)
(m & F*={a*|x € F'}) be a quadratic extension of F.

Suppose,

(i) mis a sum of 3 non-zero squares in F: m=p*+q¢*+7%, v, q, reF,
par0,

(ii) n=p"+¢ &P,

(iii) mn e F*.

Let

o=y mn (Ym+y )7 +p) e F

where we choose / mn =My .

Then K =F'(w) is o Galois quaternion extension of F'.

Proof. Let M=F(y/m,+/n) be a bicyclic biquadratic extension of F
and let Gal (M| F)={o,=1y, 0, 02, 05} Where ¢,=1, (the identity),

010 (Wm, ¥y u)——>(—=ym,/n),

gz ('\/m, J%)——)(«/;’)_’L—, —\/—ﬁ-)9

0t (W, T —>(— /T, =/ T).
Let K=M(v) (0® € M) and let o, : K—F (1=0,1,2,3) denote any (but fixed once
for all) embeddings of K into F which extend ¢, (=0, 1, 2, 3) respectively.

Now, calculating

(0= mn (Vm+yn)yn+p)* =0,1,2,3)

we have

0™ =we,, w“l—_-wMe
r

19

0?=@

V=N V=D, V=P,

r q q
where e,=+1 (1=0, 1,2, 3) are the signs depending on «, (:=0,1,2, 3) re-
spectively. Since, as seen from the above calculations, o* (¢=0, 1, 2, 3) are
all in K for any extension «;: K—F of g, (1=0,1,2, 3), it follows that K=
M(w) is a Galois extension of F and «, (1=0, 1, 2, 3) are automorphisms of K
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over F. Then, simple calculations show that
ai| M (=the restriction of a? on M)=0i=1,
and
0= —ao (2=0,1,2,3)
from which it follows that w & M, [K: F]=8. Hence, K=M(v) is a Galois
extension of F' with degree [K: F']=8.
Now, it is easily verified that
ay=1g, aixly, odaixa, of|M=0 (i=1,2,3).
Let e=a, be defined by w*=—w. Then, as seen from the above,
]-Ky € Uy, C(?, O,y aiy A3y o3
are different automorphisms of K over F, whence
Gal (K/F)={1K, €, Oy, O, Clay Oty Oty “g}'
Replacing «; by of, if necessary, we may suppose all ¢,=1 (i=1,2, 3). Then,
it follows by calculations that
ai=1, (aixly) (1=1,2,3)
al=¢ (=1,2,3)
00y =0gy, 3= 0l, K3=0
(o, is defined by ()= (x*)* for x € K)
oo, =t =o't »
These relations show that the Galois group Gal (K/F) is isomorphic to the
quaternion group of order 8.

Finally, since we can verify o*w® for any «, g € Gal(K/F), a=p, it
follows that K =F(w).

2. Let @ and Z denote the rational number field and the ring of rational
integers respectively. Letm € Z be a squarefree integer. It is known that if
there exists a Galois quaternion extension K of @ such that QCQ(vm)<=K,
then m is a sum of 3 squares in Q (hence, Q(v/m) is a real quadratic field).

Let m>0 be a squarefree positive integer. By a famous theorem of
Gauss ([2], [4]), m is a sum of (at most) 8 squares in Z if and only if m=1,
2, 3, 5, 6 mod. 8 and it is also known that m is a sum of 2 squares in Z if
and only if m is not divisible by any prime number p=3 mod. 4.

Moreover, m is a sum of 3 squares in Z (or 2 squares in Z) if and only
if m is a sum of 3 squares in @ (or 2 squares in Q). (cf. [4], chap. IV,
Appendix).

Let Q(4/m) be a real quadratic field where m is squarefree and mz=4,
7 mod. 8.

Case i), Suppose that

m=p'+¢+7, v, ¢,r>0 inZ
and m is not a sum of 2 squares in Z. If we set n=p"+¢q?% then #» is not a
square and mn is not either. In fact, if mn=10, then m=mp/*+(mq/D*e
Q'+ Q*=>m e Z*+ 2, a contradiction.
Case ii). Suppose that
m=p'+¢, »,¢>0 inZ
If we set n=m+1=p*+¢*+1, then =2, 3 mod. 4, from which % is not a
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square. Moreover, mn is not a square. For, if mn is a square then there
exists a prime number ¢ such that ¢|m, t*|mn. Since m is squarefree, ¢
must divide ». But, this implies ¢|(m, n)=1, a contradiction.

We set

o=y M (YT +/ )T +D) in the Case 1),

o=Aly mn (V1 + /7)) +D) in the Case ii).
Then, it follows from the theorem in 1 that
K=Q()(2Q(ym, y1)2Q(ym))
is a Galois quaternion extension of Q.
Examples. i) m=3=1*41*+1% n=124-1*=2, mn=6.

E=Q(JV6(W3B+/2)W2 +D).
ii) m=5=1*+2% n=m+1=6, mn=30.

K=Q(JV30/5 +V6)(W5 +1)-
iili) m=10=1*4-3% n=m-+1=11, mn=110.

K=@({/VTII0 (/10+vID(V10+1)).

3. Let p>2 be a prime number. Let @, and Z, denote the p-adic
number field and the ring of p-adic integers. As is well known, there exist
exactly 3 quadratic extensions of @, (in a fixed algebraic closure of Q,)

QWD) Q(Wu), Qv pw)
where % is a p-adic unit such that (u/p)=—1.

From the theorem of Witt ([5]), there exists a Galois quaternion exten-
sion of @, if and only if p=38 mod. 4.

For p=38 mod. 4, p is a sum of 8 squares, but it is not a sum of 2 squares
in Q,.

Now, for any a € Z, (p>2), « is a sum of 3 squares (or 2 squares) in @,
if and only if « is a sum of 3 squares (or 2 squares) in Z, ([3], Th. 34).
Hence, for p=3 mod. 4, p is a sum of 3 squares in Z,, but it is not a sum of
2 squares in Z,.

Assume p=38 mod. 4 and set m=p=a’+b*+c* a, b, c€ Z,. Then, from
the facts mentioned above, abc0, n=0a’+b*&¢ Q3. Moreover, since (—1/p)
=—1, it follows that a*4b*x0mod. p, i.e., a’4-b? is a p-adic unit, from
which mn=p(a*+0*) ¢ Q. Hence, it follows from theorem in 1 that

K=Q,(Nvmn(Wm+v)W7 +0)  (p=3mod. 4)
(m=p=a’+b*+c* n=0>+b"in Z,)
is a Galois quaternion extension of @,.

Since a Galois quaternion extension contains exactly 3 quadratic subex-
tensions and Q,(v7), Q,(v=1), Q,(y —p) are all quadratic extensions of
Q, (we may take u= —1 for p=3 mod. 4), K contains these 3 quadratic ex-
tensions of @Q,.

Examples. i) m=p=8=12+4+1+41% n=1*+41*=2, mn=6.

E=Q(NVEWB+VDIW 2 +1)).
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i) m=p=7T=1"4224+W2)» W2 eZ), n=1*4+22=5, mn=35.
K=Q,(\[V35(/T +vB)(W 5 +1))-

iii) m=p=11=1"+1*4-3% n=1*+1*=2, mn=22.
E=Qu(\V2(W/I1+V2)( 2 +1).
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