19. Certain Quadratic First Integral and Elliptic Orbits of Linear Hamiltonian System

By Shigeru MAEDA

Department of Information Science and Intelligent Systems, Faculty of Engineering, Tokushima University

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1990)

1. Introduction. This paper deals with a close relation between a hyperplane filled with elliptic orbits of a linear Hamiltonian system and a certain quadratic first integral. To be more precise, it is proved that when a linear Hamiltonian system admits an invariant hyperplane filled with closed orbits, it leaves a quadratic form invariant, and conversely, when a certain quadratic first integral is admitted, there exists such an invariant hyperplane.

By the way, the phase portrait drawn by a discrete-time system which approximates a continuous Hamiltonian system is often different from that of the original system. For example, a closed orbit of the original system is usually destroyed by a discrete system, even when the original one is linear. It seems that the result of this paper is of use for the purpose of reproducing the original elliptic orbit by a discrete system when a certain kind of first integrals is inherited.

2. Elliptic orbit of linear system. Let us think of a linear Hamiltonian system with N degrees of freedom given by

(1)
$$\frac{dx}{dt} = Hx, \quad H \in sp(N,R), \quad x \in R^{2N}.$$

We introduce into the phase space R^{2N} both a Euclidean inner product $(x,y)={}^txy$ and a symplectic inner product $\langle x,y\rangle={}^txJy$, where $J=\begin{bmatrix}0&I\\-I&0\end{bmatrix}$ and the superfix t denotes matrix transpose. An orbit of (1) which starts from x_0 is closed, it and only if $e^{\epsilon H}x_0=x_0$ holds for a positive constant ϵ . This condition is equivalent to that H has pure imaginary eigenvalues, in other words, H^2 has a negative eigenvalue. Then, we define a linear subspace by (2) $\Gamma_\beta=\{x\in R^{2N}|H^2x=-\beta^2x\} \qquad (\beta>0),$

and assume that $\Gamma_{\beta} \neq \{0\}$ from now on. Let us pay attention to the solution curves of (1) which are contained in Γ_{β} . Choose an arbitrary $q \in H_{\beta}$, $q \neq 0$, and put

$$(3) p = -\frac{1}{\beta}Hq.$$

Then, q and p are linearly independent and spans a two-dimensional hyperplane Γ included by Γ_{θ} .

Proposition 1. The orbit of (1) starting from $q \in \Gamma$ is an ellipse with the period $2\pi/\beta$, and lies in Γ . Furthermore, all elliptic orbits in Γ are

similar to each other.

Denote by q(t) and p(t) the solutions of (1) starting from q and p, respectively. Since it holds that

$$(4) Hq = -\beta p, Hp = \beta q,$$

 $\begin{aligned} & \qquad \qquad Hq \!=\! -\beta p, \quad Hp \!=\! \beta q, \\ \text{we have } & (q(t), \, p(t)) \!=\! e^{tH}(q, p) \!=\! (q, p) \! \begin{bmatrix} \cos{(\beta t)} & \sin{(\beta t)} \\ -\sin{(\beta t)} & \cos{(\beta t)} \end{bmatrix} \!. \end{aligned}$ This shows that the curve q(t) is a closed quadratic one in Γ .

The result means that Γ_{β} is full of ellipses with the period $2\pi/\beta$. A similar circumstance holds true in any other eigenspace Γ_r of H^2 when the eigenvalue is negative. In general, an orbit starting from a point in the sum $\Gamma_{\beta} + \Gamma_{r}$ is, however, like a Lissajous figure, and may not be closed.

We have not used the assumption that H belongs to sp(N, R), and the result holds good in every linear system. In case of linear Hamiltonian systems, the above plane Γ is characterized by a certain quadratic first integral, which is the theme of the next section.

3. Certain quadratic first integral. In this section, we show a close relation between a certain first integral and the hyperplane Γ . Let Γ , $\Gamma_{\mathfrak{s}}$, q and p be as in § 1. Furthermore, we remark that

$$^{t}HJ + JH = 0$$

holds, for H belongs to sp(N,R).

Theorem 2. For an arbitrary $q \in \Gamma$ $(q \neq 0)$, define p by (3). Then, the following quadratic form is a first integral of (1)

(6)
$$I(x) = \frac{1}{2} {}^{t} x^{t} J(q^{t} q + p^{t} p) Jx.$$

Proof. Put

(7.b) $\tilde{S} = {}^{t}JSJ$, (7.a) $S = q^t q + p^t p$, and use (5), and we have $dI/dt = {}^txJ(HS + S^tH)Jx/2$. Since $HS = -\beta p^tq + \beta p^tq$ $\beta q^t p = -(p^t(Hp) + q^t(Hq)) = -S^t H$, then dI/dt vanishes.

Remark. The first integral (6) is independent of the choice of $q \in \Gamma$. In fact, a quadratic form constructed from another $\tilde{q} \in \Gamma$ in the same way becomes (6) multiplied by a constant.

We show several properties of S:

(8.a) rank(S) = 2, (8.b) $S \ge 0$,

range $(S) = \Gamma$, and ker $(S) = \Gamma^{\perp}$, where Γ^{\perp} denotes the orthogonal complement of Γ with respect to (,) and $S \ge 0$ means that S is non-negative definite. These are restated in terms of \tilde{S} as follows: rank $(\tilde{S})=2$, $\tilde{S}\geq 0$, range $(\tilde{S})=$ $J(\Gamma)$, and ker $(\tilde{S}) = J(\Gamma^{\perp})$. Now, the next step is to show that the converse of the theorem is true if a slight condition is added. We give a definition concerning the condition.

Definition 1. A linear subspace \mathcal{Z} is called *null* [1], if and only if $\langle q, p \rangle$ vanishes for all vectors q and p in Ξ .

As for Γ in the above, when the eigenvalues $\pm i\beta$ of H are simple, it is not null. When Γ is not null, $\langle q, p \rangle$ is not zero for arbitrary linearly independent elements q and p. Furthermore, Γ is null if and only if $\Gamma \subset J(\Gamma^{\perp})$. Theorem 3. Suppose that (1) has a quadratic first integral given by $I(x)={}^{t}x\tilde{S}x/2$ subject to ${}^{t}\tilde{S}=\tilde{S}$, rank $(\tilde{S})=2$, and $\tilde{S}\geq 0$. If $\Gamma=\text{range}(J\tilde{S})$ is not null and $H(\Gamma)\neq\{0\}$, then Γ is filled with elliptic orbits of (1) with a single period.

Proof. If we define S by (7.b), then S satisfies (8). Therefore, S is expressed as (7.a) in terms of two non-zero vectors q and p subject to (q, p) = 0. Put $\Gamma = \{\{q, p\}\}$, and Γ is nothing but range $(J\tilde{S})$. Since Γ is not null by supposition, $\langle q, p \rangle$ does not vanish. Now, since I(x) is a first integral, it must hold that

$$(9) H \cdot SJ = SJ \cdot H.$$

Multiplying (9) by q and p from the right and using $\langle q, p \rangle \neq 0$, we can see that Hq and Hp are expressed as linear combinations of q and p. Then, we put

(10)
$$Hq = \alpha q + \beta p, \qquad Hp = \gamma q + \delta p,$$

where α , β , γ , and δ are constants. Next, multiplying (9) by ${}^{t}q$ and ${}^{t}p$ from the left and using (10) and (q,p)=0, we have $(\alpha^{t}q+\gamma^{t}p)J=-(\alpha^{t}q+\beta^{t}p)J$, and $(\beta^{t}q+\delta^{t}q)J=-(\gamma^{t}q+\delta^{t}p)J$. Then, it holds that $\alpha=\delta=0$ and $\beta+\gamma=0$, and accordingly, that $Hq=-\beta p$ and $Hp=\beta q$. Due to the supposition $H(\Gamma)\neq\{0\}$, β is not equal to zero. Thus, the conclusion is obtained from Proposition 1.

The next corollary follows directly from the above proof.

Corollary 4. In Γ there exists a nonzero vector q which is orthogonal to Hq with respect to (,).

Now, when Γ is null, the value of I(x) on Γ remains zero. Otherwise, I(x) gives a positive definite form when restricted to Γ , and its level curve on Γ is nothing but an integral curve of (1). Furthermore, the Hamiltonian vector field with the Hamiltonian I(x) is given by $H_1x=SJx$. Then, it follows from (4) and (7.a) that H_1x is equal to $\langle p,q\rangle/\beta \cdot Hx$ for every $x\in\Gamma$. That is, as far as we are restricted to Γ , the symmetry generated by I(x) produces the elliptic orbit of the original system (1). Moreover, $\ker(H_1)$ is equal to $J(\Gamma^1)$, and this symmetry yields no action in any direction in $J(\Gamma^1)$.

We close this paper by stressing again that an integral curve on Γ is nothing but a level curve of I(x) if Γ is not null. If a discrete-time system which approximates (1) inherits the first integral given by (6) and leaves Γ invariant, the discrete orbit starting from a point in Γ , namely, a point sequence, lies on the solution curve of (1) itself. In addition, if the discrete system is sufficiently near the identity mapping, it results that at least in every Γ_{β} the phase portrait of (1) is reproduced accurately by the discrete-time system.

Reference

[1] V. I. Arnold: Mathematical Methods of Classical Mechanics (Engl. Trans. by K. Vogtmann and A. Weinstein). Springer (1978).