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M. Vowe and H.-J. Seiffert [6] evaluated the sum :
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by identifying it with an Eulerian integral. Subsequently, in our attempt
in [4] to find the sum (1), without considering this Eulerian integral, we
were led naturally to numerous interesting generalizations of (1) obtainable
as useful consequences of Kummer’s summation theorem [3, p. 134, Theorem
3] in the theory of the familiar (Gaussian) hypergeometric series (see [4]
for details). The object of the present note is to derive certain basic (or q-)
extensions of (1) and of its various generalizations given already by us [4].

For real or complex g, |¢|<1, let
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for an arbitrary (real or complex) parameter 1. Then a g-extension of
Kummer’s summation theorem [3, p. 134, Theorem 3], employed in our
earlier work [4], can be written in the form (cf. [1, p. 526, Equation (1.9)]):
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in terms of a basic (or ¢-) hypergeometric ,@, function (cf., e.g., [5, p. 347,
Equation (272)]).
Defining the basic (or ¢-) binomial coefficient by
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it is easily verified that
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and that
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for an arbitrary (real or complex) parameter 2.
Applying the relationship (7), it is not difficult to state the summation
formula (4) or (5) in the (more relevant) form:
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where " (2) denotes the basic (or ¢-) Gamma function defined by
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and, in terms of the familiar Gamma function,
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Furthermore, since® [2, p. 131, Equation (3.17)]
(14) I' @I () =QAQ+*'I', (I ,(2+3%) (=9,
the sum in (9) can easily be written in the following alternative form:
(15) S — I/ 2)I((p+1)/2) (p=q).
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We now turn to the derivation of several interesting consequences of

the general result (9) or (15). Indeed, for y=2+2l and p=21+42l4+1 (I e N,),
we find from (9) that
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Multiplying both sides of (16) by (1—q)¢***-%, and subtracting the
resulting equation from (17) with [ replaced by I—1, we obtain

(leNy; p=0q").

*  Formula (14) appears in [2, p. 131, Equation (3.17)] with a misprint in the ex-

ponent of (144q).
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From the definitions (2) and (6), it follows readily that
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Thus, in the special case when 1=n e N, each of the sums in (9) onwards
would terminate at k=n—1, and we find from (18) and (12) that
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In particular, this last result (20) for =1 yields
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or, equivalently,
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Formula (21) or (22) provides a g-extension of the Vowe-Seiffert sum (1);
in fact, in the limit when ¢—1, (21) reduces immediately to (1). Formulas
(16), (17), (18), and (20), on the other hand, provide g-extensions of our
earlier results [4, p. 57, Equations (18) to (21)].

Finally, we record the following rather simple consequences of the

general result (9) with 2=n—1 (ne N):
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The sum of the g-series in (21) or (22) would follow readily upon multi-
plying both sides of (25) by (1—¢)¢" and subtracting the resulting equation
from (24). Formula (28), on the other hand, is an interesting companion
of the basic (or ¢-) binomial theorem :
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or, more generally,
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