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1. Introduction. Let x=(x,x,...,x) be a vector in R and D a
region contained in R. Let f(x) be a real-valued nonlinear function

Define an n-dimensional vector gf(x) and an nn matrixdefined on D.
H(x) by

gf(x)=(f(x)/x) (l=in)

H(x)--(3f(x)/3x3x) (1], kn).
For a vector x, we shall use the norm defined by

The Euclidean norm and the spectral norm of an nn matrix A=(a),
denoted by ]]A]] and ]A]], are defined as

,,A,[ (, a)
and

respectively, where 2 is the maximum eigenvalue of A*A and A* is the
transposed matrix of A.

Throughout this paper, we shall assume the following three conditions.
(A.1) f(x) is two times continuously differentiable on D.
(A.2) There exists a point e D satisfying gf(x)=0.
(A.3) The n n symmetric matrix H() is positive definite.

Let U( )={x;I]x- ]]} be a neighbourhood of .
The following well-known theorem gives a sufficient condition for

finding a local minimum of f(x).
Theorem 1 ([3, Theorem 8.3]). In addition to conditions (A.1)-(A.3),

suppose that the following condition (A.4) holds.

(A.4) a is a constant satisfying 0a 2

Uder eodiios (A.1)-(A.4), ere eiss eigboood U( o)CD

where the x() are generated by the gradient method
(1.1) x + x-agf(x()).

The purpose of this paper is to show Theorem 2 by considering an
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iteration method different rom the above iteration method (1.1). Theo-
rem 2 is a modification of Theorem 1. And we also present a numerical
example in order to show the efficiency of our iteration method.

2. Statement of results. We see that, by conditions (A.1)-(A.3), f(x)
has a local minimum at . When Theorem 1 is applied to the problem of
finding the extremum of functions, the value of a in (1.1) is required.
Since is unknown, in general it is very difficult to choose a so that (A.4)
holds.

Now, for computational purpose, we propose instead of (1.1) an itera-
tion method

(2.1) x(+ --x(- Vf(x()

with a constant fl satisfying
(A.5)

Then our iteration method (2.1) leads to the following
Theorem 2. Under conditions (A.1), (A.2), (A.3) and (A.5), there ex-

ists a neighbourhood U( )cD such that, for arbitrary x( e U(x; ),
X()---- a8 ] c

where the x() are generated by (2.1).
:). Poog o Theorem 2. We shall prove Theorem 2. First, define

an n-dimensional vector g(x)=(g(x)) by

(3.1) g(x)-- x gf(x).

By (A.3),
O< (p, H(2)p) <= H(2)

for any p e R with Itpll=l. Since, by (A.1), IIH(x)ll is continuous at every
point x e D, there exists a neighbourhood U(x, )cD such that x e U( 6,)
implies ]]H(x)[>0. Then, we see that g(x) is continuously differentiable
on U(; 3), and, from (3.1), by (A.2),
(3.2) g().

The nn symmetric matrix H() being positive definite rom (A.3),
all its eigenvalues (l<ign) are positive. Next, define an n n matrix
G(x) by

G(x)=(3g(x)/3x) (lgi, ]<=n).
As easily seen, it holds

(3.3) G(2) =I- fl H().

We observe that the right hand side of (3.3) is the symmetric matrix, and
so, we have

(3.4)

On the other hand,

always holds, so that

IG()l=maxll-
0< 2:__<_ H() <_-- H(2)
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(3.5)
H()I

for i= 1, 2, ., n. Using (3.5), (3.4) implies G()[1 1. Choose a constant
M so as to satisfy
such that U( )c U( ) and
(3.6) G(x) M or x e U( ).
Since, by (2.1), (3.1) and (3.2),

X( 1)__ g(x()) g(2),
this yields

+  )at.

We note that x + t(x()-) e U(2 ;) (0 tg 1), provided x() e U(x 3). There-
fore, by (3.6), we obtain

M x()- (k=0, 1, 2, ...).
This shows that there exists neighbourhood U(;)D such that, for
arbitrary x() e U(2 ),

In this way, we have proved Theorem 2, as desired.

4. Numerical example. Masuyam [1] deals with a 2unction
y(x a, b, c, d)=e(c cos bx+dsin bx) (aO),

which is called damped oscillation. This type of function is well known in
the fields of engineering and physical science. In order to show the effi-
ciency of the iteration method (2.1), we consider system of nonlinear
equations, Example 4.1. The solution of Example 4.1 using the iteration
method (2.1) is presented in Tble 4.1 below, together with the solution by
the iteration method [2, (4.1)].

(y(O. 0 a, b, c, d)= 1.50,

xample 4.1 y(0. 8; a, b, c, d)= --0. 05,
y(1.6; a, b, c, d)=--0. 12,
y(2.4; a, b, c, d)=0.04.

The solution is (a, b, c, d)=(--1.50, --2.50, 1.50, --0.50).

Table 4.1. Computation results or Example 4.1

Methods Solutions

Iteration method [2, (4.1)] (a=0.99)

Iteration method (2.1) (=0.99)

(- 1.506440, -2.502051,
1.499880, --0.5017658)

(- 1. 506458, --2.501487,
1. 499880, -0. 5009617)

(a(), b (, c(, d())= ( 1.0, --1.0, --1.0, --1.0)

The author would like to express his hearty thanks to H. Mine, Pro-
lessor Emeritus of Kyoto University, for many valuable suggestions.
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