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§1. Introduction. For a, b>0, we define two sequences {a,} and
{b.} by

1.1

a,=a, b,=b

an+l=_;"(an+bn)’ bn+1=\/anbn’ n=0’ 1’ 2’ St

It is well known and easily proved that both sequences converge to a com-
mon limit

M(a,b)=lima,=limb,,
which is called the arithmetic-geometric mean of a and b.

When ¢ and b are complex numbers, we can define a sequence {(a,, b,)}
by the same algorithm (1.1). However, since there are two choices for b, ,
at each step of (1.1), we get uncountably many sequences {(¢,, b,)}, which
make the situation much more complicated than in the real case. Although
the study of this case was initiated by Gauss, we refer to Cox [1,2] as a
modern account of what happens to the arithmetic-geometric mean of two
complex numbers.

We assume
(A) a,beC, ab#0 and a+b=£0.

The excluded cases, though trivial, will turn out to be singular in a certain
sense. It is easy to see that a, and b, also satisfy (A) for all n>0.

A pair (a,, b,) is called the right choice if

Re(b,/a,)>0 or Re(b,/a,)=0, Im(b,/a,)>0.
Note that one of (a,, b,) and (a,, —b,) is always the right choice, while the
other is “the wrong choice”.

One can prove that for any sequence {(a,, b,)} the limit r=lim a,=1lim b,
exists and that =0 if and only if all but finitely many of (a,, b,) are right
choices ([11, [3]). Let M(a, b) denote the set of such non-zero limits and
M(a, b) denote the limit attained by {(a,, b,)} where (a,, b,) is the right choice
for all n>1.

Theorem (Cox [1], Geppert [4]). Let a and b satisfy (A). Then all
the values = of M(a, b) are given by

- '=pM(a, b)"'+igM(a+b, a—D)",
where p and q are arbitrary relatively prime integers satisfying p=1mod 4
and ¢q=0mod 4.
The purpose of this note is to give a sketch of a proof different from
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Cox’s; our proof does not rely on theta identities, but on certain integrals
on the elliptic curve, ¥*=2(1—x)(@*(1 —x)+b*x) :

R
(1.2) S
iM(a+b,a—b)"=—J L

T Jo Y

The first formula is introduced in [1] in a slightly different fashion. The
second follows from the first by a change of the variable: 1—x)(1—2")=1.

§2. Connectedness of M(z). Due to the homogeneity, M(ia, 1b)=
AM(a, b), M(Aa, ia)=21M(a, b), 2 € C, we may put a=1, b=z and write M(2)=
M@, z) and M(z)=M(1,2). The assumption (A) is now

zeC, :=C\{0, £1}.

a,(z) and b,(2) are algebraic functions possibly with branch singularities at
0, =1 and oo. M(2) consists of values of holomorphic functions; this
follows from the fact that lim a,(2)=1im b,(z) locally defines a holomorphic
function.

The first part of our proof consists in showing that, for any fixed z, € C,,
2.1 M(2) ={TxM(20) 5 [1] € m:(Co 5 20)},
where 7, f denotes the holomorphic function obtained by the analytic co.-
tinuation of s along the path 7. The above statement is an easy conse-
quence of the following observation.

Lemma. Letz, € C,and {(a,(z,), b,(2))}r-, be a sequence defined by the
algorithm (1.1) with a,=1 and b,=z, Suppose that there is a number
N(>2) such that (a,, b,) is the right choice for all w>N. Then there exists
a point z, and a curve ¥ in C, connecting z, to z, such that (7,a,(z), 740.(2,)
18 the right choice for every n >N —1.

§3. A monodromy representation. (2.1) says that all the values of
M(z,) are attained by the analytic continuation of M(z) along various cycles
of 7,(C,; z). We will now study 7,M(z,) when z,=1/2; the general case
follows easily from this if we connect 2, to 1/2 by a suitable path.

Let 7, be the circle of radius 1/2 around the center z=1 and 7, the cir-
cle of radius 1/2 around z=0; both are oriented in the positive direction.
We will consider them as elements of =,(C,; 1/2). Let 7_, be the cycle that
starts at the point 1/2, moves along the upper semi-circle of 7,, then goes
on the circle of radius 1/2 around the point —1 and finally returns to the
point 1/2 traveling the same upper half of 7,. Note that =,(C,;1/2) is a
free group generated by r_,, 7, and 7,.

We now write (1.2) in the following form :

M), iMA+2, 1-2) )= 2 [2)(u,Q2), ),
where 1=1()=(1—2""" and

[ [
%w‘ﬁm»’ w@=|;
with y(A)?*=2(1 —2)(A—2).

da
y(2)



324 K. NISHIWADA [Vol. 64(A),

The map a(2): C,—C, :=C\{0,1} induces the map 2,: ,(C,; 1/2)—

7,(C;;4/3). We then have

1*7'0:5%, 2*71=5;1, Z*T—1=5f15;151’
where §, and 4, are cycles e n,(C,; 4/3) defined as follows: 5, moves once
around the point 1 (but not 0) and §.. moves once around the points 0 and
1, both in the positive direction.

We are now concerned with what happens to %, and u, when 1 moves
along the cycle 4, or d,. This actually corresponds to the question of a
monodromy representation of a Legendre equation,

AA2A—Du"”"+@i—Duw' +A/Hu=0,
since u, and %, form a fundamental system of the equation. However, we
do not need this fact here. A continuous variation of the paths of integra-
tion for u, and u, in accordance with the move of 1 leads to

)0 () o=t )
Uy Uy 01
() -G Y

Therefore, all

7M@), iM(1+2, 1—2)), Tem(Co; %)

are obtained by the action of the subgroup I" (of SL,(Z)) generated by
U,V and U-'WU.
Now, we define I',(4) as the group of matrices
(7" ‘1) of SL(Z)
r s
such that p=s=1 (mod 4), ¢=0 (mod 4) and r=0 (mod 2). The last part of
our proof is devoted to proving I'=1%(4). Our theorem is an immediate
consequence of this, since the set of the first rows of the matrices of I,(4)
equals
{(®, @) ; p and q are relatively prime, p=1 (mod 4) and ¢=0 (mod 4)}.
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