91. A Holomorphic Structure of the Arithmetic-geometric Mean of Gauss

By Kimimasa Nishiwada

Institute of Mathematics, Yoshida College, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., Nov. 14, 1988)

§ 1. Introduction. For a, b>0, we define two sequences $\{a_n\}$ and $\{b_n\}$ by

(1.1)
$$a_0 = a, b_0 = b a_{n+1} = \frac{1}{2}(a_n + b_n), b_{n+1} = \sqrt{a_n b_n}, n = 0, 1, 2, \cdots$$

It is well known and easily proved that both sequences converge to a common limit

$$M(a, b) = \lim a_n = \lim b_n$$

which is called the arithmetic-geometric mean of a and b.

When a and b are complex numbers, we can define a sequence $\{(a_n,b_n)\}$ by the same algorithm (1.1). However, since there are two choices for b_{n+1} at each step of (1.1), we get uncountably many sequences $\{(a_n,b_n)\}$, which make the situation much more complicated than in the real case. Although the study of this case was initiated by Gauss, we refer to Cox [1,2] as a modern account of what happens to the arithmetic-geometric mean of two complex numbers.

We assume

$$(A)$$
 $a, b \in C, ab \neq 0 \text{ and } a \pm b \neq 0.$

The excluded cases, though trivial, will turn out to be singular in a certain sense. It is easy to see that a_n and b_n also satisfy (A) for all $n \ge 0$.

A pair (a_n, b_n) is called the right choice if

$$\text{Re}(b_n/a_n) > 0$$
 or $\text{Re}(b_n/a_n) = 0$, $\text{Im}(b_n/a_n) > 0$.

Note that one of (a_n, b_n) and $(a_n, -b_n)$ is always the right choice, while the other is "the wrong choice".

One can prove that for any sequence $\{(a_n, b_n)\}$ the limit $\tau = \lim a_n = \lim b_n$ exists and that $\tau \neq 0$ if and only if all but finitely many of (a_n, b_n) are right choices ([1], [3]). Let $\mathfrak{M}(a, b)$ denote the set of such non-zero limits and M(a, b) denote the limit attained by $\{(a_n, b_n)\}$ where (a_n, b_n) is the right choice for all $n \geq 1$.

Theorem (Cox [1], Geppert [4]). Let a and b satisfy (A). Then all the values τ of $\mathfrak{M}(a, b)$ are given by

$$\tau^{-1} = pM(a, b)^{-1} + iqM(a+b, a-b)^{-1},$$

where p and q are arbitrary relatively prime integers satisfying $p \equiv 1 \mod 4$ and $q \equiv 0 \mod 4$.

The purpose of this note is to give a sketch of a proof different from

Cox's; our proof does not rely on theta identities, but on certain integrals on the elliptic curve, $y^2 = x(1-x)(a^2(1-x)+b^2x)$:

(1.2)
$$M(a, b)^{-1} = \frac{1}{\pi} \int_{0}^{1} \frac{dx}{y}, \\ iM(a+b, a-b)^{-1} = \frac{1}{\pi} \int_{0}^{-\infty} \frac{dx}{y}.$$

The first formula is introduced in [1] in a slightly different fashion. The second follows from the first by a change of the variable: (1-x)(1-x')=1.

§ 2. Connectedness of $\mathfrak{M}(z)$. Due to the homogeneity, $M(\lambda a, \lambda b) = \lambda M(a, b)$, $\mathfrak{M}(\lambda a, \lambda a) = \lambda \mathfrak{M}(a, b)$, $\lambda \in C$, we may put a = 1, b = z and write M(z) = M(1, z) and $\mathfrak{M}(z) = \mathfrak{M}(1, z)$. The assumption (A) is now

$$z \in C_0 := C \setminus \{0, \pm 1\}.$$

 $a_n(z)$ and $b_n(z)$ are algebraic functions possibly with branch singularities at 0, ± 1 and ∞ . $\mathfrak{M}(z)$ consists of values of holomorphic functions; this follows from the fact that $\lim a_n(z) = \lim b_n(z)$ locally defines a holomorphic function.

The first part of our proof consists in showing that, for any fixed $z_0 \in C_0$, (2.1) $\mathfrak{M}(z_0) = \{ \gamma_* M(z_0) ; [\gamma] \in \pi_1(C_0; z_0) \},$

where $\gamma_* f$ denotes the holomorphic function obtained by the analytic continuation of f along the path γ . The above statement is an easy consequence of the following observation.

Lemma. Let $z_0 \in C_0$ and $\{(a_n(z_0), b_n(z_0))\}_{n=0}^{\infty}$ be a sequence defined by the algorithm (1.1) with $a_0=1$ and $b_0=z_0$. Suppose that there is a number $N(\geq 2)$ such that (a_n, b_n) is the right choice for all $n\geq N$. Then there exists a point z_1 and a curve γ in C_0 connecting z_0 to z_1 such that $(\gamma_*a_n(z_1), \gamma_*b_n(z_1))$ is the right choice for every $n\geq N-1$.

§ 3. A monodromy representation. (2.1) says that all the values of $\mathfrak{M}(z_0)$ are attained by the analytic continuation of M(z) along various cycles of $\pi_1(C_0; z_0)$. We will now study $\Gamma_*M(z_0)$ when $z_0=1/2$; the general case follows easily from this if we connect z_0 to 1/2 by a suitable path.

Let γ_1 be the circle of radius 1/2 around the center z=1 and γ_0 the circle of radius 1/2 around z=0; both are oriented in the positive direction. We will consider them as elements of $\pi_1(C_0; 1/2)$. Let γ_{-1} be the cycle that starts at the point 1/2, moves along the upper semi-circle of γ_0 , then goes on the circle of radius 1/2 around the point -1 and finally returns to the point 1/2 traveling the same upper half of γ_0 . Note that $\pi_1(C_0; 1/2)$ is a free group generated by γ_{-1} , γ_0 and γ_1 .

We now write (1.2) in the following form:

$$(M(z)^{-1}, iM(1+z, 1-z)^{-1}) = (\sqrt{\lambda} /\pi)(u_1(\lambda), u_2(\lambda)),$$

where $\lambda = \lambda(z) = (1 - z^2)^{-1}$ and

$$u_1(\lambda) = \int_0^1 \frac{dx}{y(\lambda)}, \qquad u_2(\lambda) = \int_0^{-\infty} \frac{dx}{y(\lambda)}$$

with $y(\lambda)^2 = x(1-x)(\lambda-x)$.

The map $\lambda(z): C_0 \to C_1 := C \setminus \{0, 1\}$ induces the map $\lambda_*: \pi_1(C_0; 1/2) \to \pi_1(C_1; 4/3)$. We then have

$$\lambda_* \gamma_0 = \delta_1^2$$
, $\lambda_* \gamma_1 = \delta_\infty^{-1}$, $\lambda_* \gamma_{-1} = \delta_1^{-1} \delta_\infty^{-1} \delta_1$,

where δ_1 and δ_{∞} are cycles $\in \pi_1(C_1; 4/3)$ defined as follows: δ_1 moves once around the point 1 (but not 0) and δ_{∞} moves once around the points 0 and 1, both in the positive direction.

We are now concerned with what happens to u_1 and u_2 when λ moves along the cycle δ_1 or δ_{∞} . This actually corresponds to the question of a monodromy representation of a Legendre equation,

$$\lambda(\lambda-1)u''+(2\lambda-1)u'+(1/4)u=0$$
,

since u_1 and u_2 form a fundamental system of the equation. However, we do not need this fact here. A continuous variation of the paths of integration for u_1 and u_2 in accordance with the move of λ leads to

$$\delta_{1*}inom{u_1}{u_2}=U^{-1}inom{u_1}{u_2}, \qquad U=inom{1}{0} & 1, \ \delta_{\infty*}inom{u_1}{u_2}=Vinom{u_1}{u_2}, \qquad V=inom{1}{0} & 1.$$

Therefore, all

$$\gamma_*(M(z)^{-1},\ iM(1+z,\ 1-z)^{-1}), \qquad \gamma \in \pi_1\!\!\left(C_{\scriptscriptstyle 0}\,;\, rac{1}{2}
ight)$$

are obtained by the action of the subgroup Γ (of $SL_2(Z)$) generated by U^2, V and $U^{-1}VU$.

Now, we define $\Gamma_2(4)$ as the group of matrices

$$\begin{pmatrix} p & q \\ r & s \end{pmatrix}$$
 of $SL_2(Z)$

such that $p\equiv s\equiv 1\pmod 4$, $q\equiv 0\pmod 4$ and $r\equiv 0\pmod 2$. The last part of our proof is devoted to proving $\Gamma=\Gamma_2(4)$. Our theorem is an immediate consequence of this, since the set of the first rows of the matrices of $\Gamma_2(4)$ equals

 $\{(p,q); p \text{ and } q \text{ are relatively prime}, p \equiv 1 \pmod{4} \text{ and } q \equiv 0 \pmod{4}\}.$

References

- [1] Cox, D.: The arithmetic-geometric mean of Gauss. L'Enseignement Math., 30, 275-330 (1984).
- [2] —: Gauss and the arithmetic-geometric mean. Notices of the AMS, 32, 147-151 (1985).
- [3] von David, L.: Arithmetisch-geometrisches Mittel und Modulfunktion. J. Reine Angew. Math., 159, 154-170 (1928).
- [4] Geppert, H.: Zur Theorie des arithmetisch-geometrischen Mittels. Math. Ann., 99, 162-180 (1928).