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30. A Note on the Abstract Cauchy.Kowalewski Theorem

By Kiyoshi ASANO
Institute of Mathematics, Yoshida College, Kyoto University

(Communicated by K6saku YOSmA, M. . A., April 12, 1988)

The purpose of this note is to give a simplified proof and an extention
o the nonlinear Cauchy-Kowalewski theorem established by Ovsjannikov
[5], Nirenberg [3], Nishida [4] and Kano-Nishid [2] (Appendice). The
ormultion is generalized, and we need only the contraction mapping
principle in the proofs. (See also [1] Appendix C.)

Let (X 0_p_p0} be a Bnch scale so that XX, and I,_] I, or
any popp’_O, where I denotes the norm o X,. Consider the equation
( 1 ) u(t) F(t, u(. )), 0< t< T.

To state the assumptions on F, we introduce some notations. Let
be the space of continuous functions f(s) o s e [0, t] with values in the
Banach space X, which is equipped with the norm
( 2 ) Ifl.,= sup f(s) 1..

Ost

We also put X,,,(R)= {f e Xp,
We state the assumptions on F"
(F.1) There exist constants R0 and t’00 such that for any u e

Xp,,(R) F(t, u(.)) is an X,,-valued continuous function on [0, r] if 0_p’
Po-- l’0r.

(F.2) For p’p(s)_p_po--l’oC and 0r_T,F stisfies the following
inequality (3) for any u, v e Xp,(R)"
( 3 ) IF(t, u(.))-F(t, v(.))-- C lu(s)-- v(s)Ip(s) (p(s)-- p’)ds,

where C is a constant independent o t, r, u, v, p, p(s) or
(F.3) For 0r_T and p_p0-’0r, F(t, 0) is continuous in X, and

satisfies
( 4 ) IF(t, 0) Ipo_ro_R04R.

For later use we introduce two Banach spaces Yp,r and Zr o Xp-vlued
continuous unctions, by indicating the norms (the range o t being omitted
without confusion)"
( 5 ) Ilu Ip,r= sup lu(t) I-r,
(6) [lul]r-- sup [u(t)l

where (t)=(1-t)e-t. By Y,r(R) we denote the subset {f e Y,r If ],r_R}.
Clearly we have the ollowing
(7) (t) is monotone decreasing in [0, 1],
( 8 ) 1--(t)t for 0tl,
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( 9 ) (s)--(t)_e-(t--s) for 0stl,
(10) Ir_ll lit’ for
(11) I1<_11 I1o. <_(1-r’/r) -ell 11, for

Theorem 1. Under the assumptions (F.1), (F.2) and (F.3) there is a
constanto such that there exists a unique solution of (1) in Y,o.r(R)
X,o_r. for r e (0, min {T, p0/r}].

Consider an equation of extended type"

(12) u(t)=F(t, u(.))+.[, E(t,s)G(s, u(.))ds, OtT.
We assume that F satisfies (F.1)-(F.3) and

(G.1) G(t, u(.)) satisfies the same condition as (F.1),
(G.2) or p’p(s)ppo-ot there holds

(13) G(t, u)- G(t, v)],
(t)-(t)/(-,)+, jo ()-()()/(()-,),

where B and B’ are independent of t, , u, v, p, p(s) or
(G.3) or 0rT and pgo-or, G(t,O) is continuous in X. and

stisfies
(4) a(t, 0)I,o-o R.
We also assume the linear operator E(t, s) satisfies"

(E) For any ueX, E(t,s)u is continuous on r={(t,s)’Os<t<T}
with values in X,, i2 p’p-(t-s) with some0 and ppo-ot, nd there
holds
(15) E(t, s)u],_ (_ )

where the constant A does not depend on t, s, p or p’.
Theorem 2. Under the assumptions (F.1)-(F.3), (G.1)-(G.3) and (E)

there exists a )max fro, fie) such that there is a unique solution u(t) of (12)
in Y,o.r(R) X,o_.(R) for any , 0rmin (T, po/).

Proof of Theorem 1. We define mapping H rom ZX,.(R) into

Z by
(16) Hu(t)= F(t, u(. )).
Then we have
(17) Hu(t)--Hv(t)],=IF(t, u(.))--F(t, v(.))l,

.[ C ]u(s)--v(s), (p(s)-- p) -ds

C p(s)))-(p(s) p)-ds.

We determine p(s) by
(18) (s)-=(0-)(s/(0- )).
We cn take this p(s), since (18) implies
(9) o-(s)=(o-){-e(s/(o-))}

>(0-){s/(0-)} s.
Calculating the integrnd of (17), we obtain

e(s/(0-(s)))-(0- (s))-2e(p0-- p)(po-- p-- s) -er/(-).
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Here we have used the equality" 1- e- x_ xe-, 0 1, with x- s/(p0-- p).
Hence we have

IHu(t)--Hv(t)l, e-t/("-")C Ilu-vll o 2e(p-P)(P-P-S)-ds

<_2Ce u- v [ (po-- p)’-(po-- p-- ’t) -.
This implies
(20) IHu--Hvii<_(2Ce/D llu--v

We choose " satisfying
(21) ’>_max (4’0/3, 8Ce).
Then we define an approximating sequence u(t) and an associated sequence

’ by
(22) Uo-- F(t, 0), u Hu (n>_ 1),
(23) ’--- ’(1-- 2--) i.e. T-- ’n ’2--I

Clearly it follows (cf. (10) and (11))
(24) IlUn/--Un g(2Ce/’n) ]Un--Un-
(25)

These imply
(26) Un+I--U ,o,r__2+’e(2Ce)nTnllu,-Uo

_8/3e(4Ce/7)
The assumptions (F.2) and (F.3) imply
(27)
(28) u0, u0 II.o,o R0.
Hence we have
(29) []u+-u [.o,g 16/9e(4Ce/)n+Ro,
(30) u. +, ll,o,{1 + 4e(4Ce / Y)}R0.
If we choose satisfying (21) and
(31) 16CeRo /(R- Ro)
then we obtain
(32) ][Un]]o,rR nO,
which shows u e Y.o,(R), i.e. Un(t) e X,o_.,,(R). Thus Hu is well-defined.
The estimate (29) also implies that u(t) converges in Y.o,(R) and in

X.o_r.,(R). The limit u(t) is a solution of (1). The uniqueness of the solu-
tion in Y,, (pgpo) is obtained from (20).

We note that the estimate of is given by
(r.) r=max {4r0/3, 8Ce, 16CeRo/(R--Ro)}.

Proof of Theorem 2. We define mappings K and L from Z X,,.(R)
into Z by

Then from (G.1)-(G.2) and (E), we have

(sa) Ku(t)-Kv(t)

jo do
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We determine p(s) by (18). From (9) we have with
(37) p(r) p (po- p){ffr/ (p0- p)) (’t / (p0- p))}

(po- p)e-’(t-- r) / (po-- p) 2(t-- r)
(38) p(r) (p +(t- r)) (1 / 2){p(r)-- p}.
Thus the same calculations as those rom (19) to (20) give
(39) IIKu--Kv Il<_ (2Ae/’) ]lu-- v (B+B’r),
(40) Lu-Lv Ir

_
[2(C+AB+AB’ro)e / ’} u-- v

We choose r0 and " satisfying
(F.2) ’max {4’o/3, 8De, 2fie, p0/r0, 16De2R2/(R--R2)},

R2-- Ro ARlro R, D-- C AB AB’ro.
Then, we can complete the proof.
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