102 Proc. Japan Acad., 64, Ser. A (1988) [Vol. 64(A),

30. A Note on the Abstract Cauchy-Kowalewski Theorem

By Kiyoshi AsANO
Institute of Mathematics, Yoshida College, Kyoto University

(Communicated by Késaku Yosipa, M. J. A., April 12, 1988)

The purpose of this note is to give a simplified proof and an extention
of the nonlinear Cauchy-Kowalewski theorem established by Ovsjannikov
[6], Nirenberg [3], Nishida [4] and Kano-Nishida [2] (Appendice). The
formulation is generalized, and we need only the contraction mapping
principle in the proofs. (See also [1] Appendix C.)

Let {X,; 0<p<p,} be a Banach scale so that X,cX, and | |,>| |, for
any p,>p>p’ >0, where| |, denotes the norm of X,. Consider the equation
(1) w(t)=F(t, u(-)), 0<t<T.

To state the assumptions on F, we introduce some notations. LetX,,
be the space of continuous functions f(s) of se[0,t] with values in the
Banach space X,; which is equipped with the norm

(2) lflp,z=§gglf(s)lp'

We also put X, (R)={fe X, .;|fl,.<R}.

We state the assumptions on F':

(F.1) There exist constants R>0 and 7,>0 such that for any ue
X, (R) F(t,u(-)) is an X, -valued continuous function on [0, 7] if 0<p'<<p<

0—1oT-

‘ (F.2) For p’<p(9)<p<Lpy—7,r and 0<c< T, F satisfies the following
inequality (8) for any u,v ¢ X, (R):
(3) |F (¢, u(-)—F(&,v(-))|,

< j Cu(8)—(S) oy (0(8)— p)dis,

where C is a constant independent of ¢, z, u, v, p, p(s) or p’.

(F.3) For 0<c<T and p<p,—T7,r, F(¢,0) is continuous in X, . and
satisfies
(4) |F(t, 0),,-, . <R,<RE.

For later use we introduce two Banach spaces Y, , and Z, of X ,-valued
continuous functions, by indicating the norms (the range of ¢ being omitted
without confusion) :

(5) 12 flo,r=sUp [CE) -1,

(6) lulr=__sup _[u®)], o(t](os—0)),

where o(t)=(1—1t)e"*. By Y, ,(R) we denote the subset {f e Y, ;| fl,,,<E}.
Clearly we have the following :

(7) ¢(t) is monotone decreasing in [0, 1],

(8) 1—op(t) >t for 0<<t <1,
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(9 P(8)—p) >e'(t—9) for 0<s<t<1,
(10) <0 for r>7">0,
(€8)) I 1< e <A=T/D) el |l for r>7.

Theorem 1. Under the assumptions (F.1), (F.2) and (F.3) there is a
constant T>7, such that there exists a unique solution of (1) in Y, (R)N
X, -re, for £ € (0, min {T, p,/7}].

Consider an equation of extended type:

12) wt)=F(, u(-))+j: E(t, 9)GGs, u(-)ds,  0<t<T.

We assume that F satisfies (F.1)-(F.3) and
(G.1) G, u(.)) satisfies the same condition as (F.1),
(G.2) for p'<p(s)<p<p,—T,t there holds

(13) |G, w)— G, v)|,

<Blu®)—v®),/(o— )+ B’ j:m(s)—v(s) b/ (0(8)— )3,

where B and B’ are independent of ¢, z, 4, v, p, p(s) or o,

(G.8) for 0<z<T and p<p,—T7,, G(t,0) is continuous in X, . and
satisfies
(14) |G(¢, 0)],p—r e < Ry
We also assume the linear operator E(t, s) satisfies:

(E) For any ue X, E(t,s)u is continuous on 4,={(, s): 0<s<t<T}
with values in X, if o’<p— p(t—s) with some >0 and p<p,—7,t, and there
holds
(15) | B, )%l pie- o < Alul,,
where the constant A does not depend on ¢, s, p or p’.

Theorem 2. Under the assumptions (F.1)-(F.3), (G.1)-(G.3) and (E)
there exists a ¥ >max (7,, fe) such that there is a unique solution u(t) of (12)
mY, (RN X, -r,«(R) for any =, 0<z<min (T, p,/7).

Proof of Theorem 1. We define a mapping H from Z,NX, (R) into
Z, by
(16) Hut)=F(t, u(-)).

Then we have
an |Hu(t) —Ho@)|,=|F ¢, u(-)—F(, v(-))|,

< j Cu($)—v(3)], 00 (0(8)—p)"'ds

<Cllu=vl; | 8/ (g, () o) —p)ds.
We determine p(s) by

(18) 0(8) — o= (o, — p)p(rs/ (s — p))-
We can take this p(s), since (18) implies
19 po— p(8)= (0, — p){1— (7' (0,— p))}

>(oo— {18/ (py—p)}=Ts.
Calculating the integrand of (17), we obtain
o(rs/(py— p(8)) (o, — p(sN
éZe(po—p)(p,,—p—Ts)‘ze”/“’f”).
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Here we have used the equality: 1—e-*=xze’*, 0<<1, with 2=7s/(0,— p).
Hence we have
| Hu(t)— Ho®)], e/ %00 < C lu—nvl} j 2e(0y— 0) (0 — p—T8)*ds
0

<2Ce|lu—vl, (oy— o) "*(0s—p— 7).
This implies

(20) |Hu—Hv|,<(2Ce/T) |lu—vl.
We choose 7 satisfying
(21) 7>max (47,/8, 8Ce).
Then we define an approximating sequence u,(t) and an associated sequence
7. by
(22) u,=F(t, 0), U, =Hu, @0>1),
(23) T,=T(1—271""), ie. 7—7,=7r2""",
Clearly it follows (cef. (10) and (11))
(24) ”unH—un”rné(zce/rn) “u’n_un—lnrn'
(25) ”un+l_un”po,ré(l—'rn/r)_le ||un+1_un||rn

=2"*e ”unn—un ||rn
These imply
(26) “un“_un||po,7£2n+le(zce)n7/;n “ul—u()”n.
<8/3e(dCe/1)" ||uy—uy|l;,-
The assumptions (F.2) and (F.3) imply

@27 1oy — o, = 1 F'C-, ue) = F(-, 0)[,, < (2Ce/T) || %o,
(28) Il 201y, <M %o [l g0 < R

Hence we have

(29) 1%y 41— Un ll,,,,<16/9e(4Ce/T)" 'R,

30) (%41l AL +4e(4Ce DR,

If we choose 7 satisfying (21) and

3D r>16Cé¢'R,/(R—R,),

then we obtain

(32) |l <R, 00,

which shows u, e Y, (R), i.e. u,(t) e X, _;. (R). Thus Hu, is well-defined.
The estimate (29) also implies that u,(t) converges in Y, .(K) and in
X, -r(R). The limit u(t) is a solution of (1). The uniqueness of the solu-
tionin Y, ; (o<p,) is obtained from (20).

We note that the estimate of 7 is given by
r.n r=max {47,/3, 8Ce, 16Ce’R,/(R— R,)}.

Proof of Theorem 2. We define mappings K and L from Z,NX, .(R)
into Z, by

33) Ku(t):ﬁ E(t, 9)G(s, u(-))ds,  Lu=Hu+Ku.
Then from (G.1)-(G.2) and (E), we have
Gy |Kut)—Ko@®),< j: AB|u(8)—v(8)], 0, {p(8) — o+ Bt —8))}'ds

+ j “ds j " AB' |ur) =00y (00— (p-+ Bt — ) ds
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We determine o(s) by (18). From (9) we have with 7r>28e

(37 p(r)— p=(os— )17 [ (0s— 0)) — (1t | (0y— )}
>(po—p)e T —1)/(0s— p) =2p(E—7),

(38) () —(o+ BE—1) = (L/2){o(r) — g}

Thus the same calculations as those from (19) to (20) give

(39 |Ku—Kv|,<(24¢e/7) |lu—2]; (B+B'7), (re>p0),

(40) |Lu— Lo |, <{2(C+ AB+ AB'r)e/1} |[u—v];.

We choose 7, and 7 satisfying
r.2) Y >max {47,/3, 8De, 28e, p,/z,, 16De’R,/(R— R,)},

R,=R,+ ARz, <R, D=C+AB+ AB'z,.
Then, we can complete the proof.
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