A Note on the Abstract Cauchy-Kowalewski Theorem

By Kiyoshi Asano

Institute of Mathematics, Yoshida College, Kyoto University (Communicated by Kôsaku Yosida, M. J. A., April 12, 1988)

The purpose of this note is to give a simplified proof and an extention of the nonlinear Cauchy-Kowalewski theorem established by Ovsjannikov [5], Nirenberg [3], Nishida [4] and Kano-Nishida [2] (Appendice). formulation is generalized, and we need only the contraction mapping principle in the proofs. (See also [1] Appendix C.)

Let $\{X_{\rho}; 0 \leq \rho \leq \rho_0\}$ be a Banach scale so that $X_{\rho} \subset X_{\rho'}$ and $| |_{\rho} \geq | |_{\rho'}$ for any $\rho_0 \ge \rho \ge \rho' \ge 0$, where $| \cdot |_{\rho}$ denotes the norm of X_{ρ} . Consider the equation $0 \le t \le T$. (1) $u(t) = F(t, u(\cdot)),$

To state the assumptions on F, we introduce some notations. Let $X_{\rho,t}$ be the space of continuous functions f(s) of $s \in [0, t]$ with values in the Banach space $X_{\mathfrak{g}}$, which is equipped with the norm

$$|f|_{\rho,t} = \sup_{0 \le s \le t} |f(s)|_{\rho}.$$

We also put $X_{\rho,t}(R) = \{ f \in X_{\rho,t} ; |f|_{\rho,t} \leq R \}.$

We state the assumptions on F:

- (F.1) There exist constants R>0 and $\gamma_0>0$ such that for any $u\in$ $X_{\rho,\tau}(R)$ $F(t,u(\cdot))$ is an X_{ρ} -valued continuous function on $[0,\tau]$ if $0 \le \rho' < \rho \le$ $\rho_0 - \gamma_0 \tau$.
- (F.2) For $\rho' < \rho(s) \le \rho \le \rho_0 \gamma_0 \tau$ and $0 < \tau \le T$, F satisfies the following inequality (3) for any $u, v \in X_{\rho,\tau}(R)$:

(3)
$$|F(t, u(\cdot)) - F(t, v(\cdot))|_{\rho'} \le \int_0^t C|u(s) - v(s)|_{\rho(s)} / (\rho(s) - \rho') ds,$$

where C is a constant independent of t, τ , u, v, ρ , $\rho(s)$ or ρ' .

(F.3) For $0 < \tau \le T$ and $\rho \le \rho_0 - \gamma_0 \tau$, F(t, 0) is continuous in $X_{\rho, \tau}$ and satisfies

$$|F(t,0)|_{\rho_0-\gamma_0t} \leq R_0 < R.$$

For later use we introduce two Banach spaces $Y_{\rho,\tau}$ and Z_{τ} of X_{ρ} -valued continuous functions, by indicating the norms (the range of t being omitted without confusion):

(5)
$$||u||_{\rho,\tau} = \sup_{t>0} |u(t)|_{\rho-\tau t},$$

(5)
$$||u||_{\rho,\tau} = \sup_{t \ge 0} |u(t)|_{\rho-\tau t},$$
(6)
$$||u||_{\tau} = \sup_{0 \le \tau t \le \rho_0 - \rho} |u(t)|_{\rho} \varphi(\tau t/(\rho_0 - \rho)),$$

where $\varphi(t) = (1-t)e^{-t}$. By $Y_{\rho,\gamma}(R)$ we denote the subset $\{f \in Y_{\rho,\gamma}; \|f\|_{\rho,\gamma} \leq R\}$. Clearly we have the following:

 $\varphi(t)$ is monotone decreasing in [0, 1], (7)

(8)
$$1-\varphi(t)>t \text{ for } 0< t<1,$$

(9)
$$\varphi(s)-\varphi(t)\geq e^{-1}(t-s) \qquad \text{for } 0\leq s\leq t\leq 1,$$

(11)
$$\| \|_{\gamma} \leq \| \|_{\rho_0, \gamma} \leq (1 - \gamma'/\gamma)^{-1} e \| \|_{\gamma'} \quad \text{for } \gamma > \gamma'.$$

Theorem 1. Under the assumptions (F.1), (F.2) and (F.3) there is a constant $\tau > \tau_0$ such that there exists a unique solution of (1) in $Y_{\rho_0,\tau}(R) \cap X_{\rho_0-\tau,\tau}$ for $\tau \in (0, \min\{T, \rho_0/\tau\}]$.

Consider an equation of extended type:

(12)
$$u(t) = F(t, u(\cdot)) + \int_{0}^{t} E(t, s)G(s, u(\cdot))ds, \quad 0 \le t \le T.$$

We assume that F satisfies (F.1)–(F.3) and

(G.1) $G(t, u(\cdot))$ satisfies the same condition as (F.1),

(G.2) for
$$\rho' < \rho(s) \le \rho \le \rho_0 - \gamma_0 t$$
 there holds

(13)
$$|G(t, u) - G(t, v)|_{\rho'}$$

$$\leq B|u(t)-v(t)|_{
ho}/(
ho-
ho')+B'\int_{0}^{t}|u(s)-v(s)|_{
ho(s)}/(
ho(s)-
ho')ds,$$

where B and B' are independent of $t, \tau, u, v, \rho, \rho(s)$ or ρ' ,

(G.3) for $0 < \tau \le T$ and $\rho \le \rho_0 - \gamma_0 \tau$, G(t, 0) is continuous in $X_{\rho, \tau}$ and satisfies

$$|G(t,0)|_{\rho_0-\gamma_0 t} \leq R_1.$$

We also assume the linear operator E(t, s) satisfies:

(E) For any $u \in X_{\rho}$ E(t,s)u is continuous on $\Delta_T = \{(t,s) : 0 \le s \le t \le T\}$ with values in $X_{\rho'}$ if $\rho' \le \rho - \beta(t-s)$ with some $\beta \ge 0$ and $\rho < \rho_0 - \gamma_0 t$, and there holds

$$|E(t,s)u|_{\rho-\beta(t-s)} \leq A|u|_{\rho},$$

where the constant A does not depend on t, s, ρ or ρ' .

Theorem 2. Under the assumptions (F.1)-(F.3), (G.1)-(G.3) and (E) there exists a $\gamma > \max(\gamma_0, \beta e)$ such that there is a unique solution u(t) of (12) in $Y_{\rho_0, \gamma}(R) \cap X_{\rho_0, -\tau, \tau}(R)$ for any $\tau, 0 < \tau \le \min(T, \rho_0/\gamma)$.

Proof of Theorem 1. We define a mapping H from $Z_{\tau} \cap X_{\rho,\tau}(R)$ into Z_{τ} by

(16)
$$Hu(t) = F(t, u(\cdot)).$$

Then we have

$$\begin{aligned} |Hu(t) - Hv(t)|_{\rho} &= |F(t, u(\cdot)) - F(t, v(\cdot))|_{\rho} \\ &\leq \int_{0}^{t} C |u(s) - v(s)|_{\rho(s)} (\rho(s) - \rho)^{-1} ds \\ &\leq C ||u - v||_{r} \int_{0}^{t} \varphi(\gamma s / (\rho_{0} - \rho(s)))^{-1} (\rho(s) - \rho)^{-1} ds. \end{aligned}$$

We determine $\rho(s)$ by

(18)
$$\rho(s) - \rho = (\rho_0 - \rho)\varphi(\gamma s/(\rho_0 - \rho)).$$

We can take this $\rho(s)$, since (18) implies

(19)
$$\rho_0 - \rho(s) = (\rho_0 - \rho)\{1 - \varphi(rs/(\rho_0 - \rho))\}\}$$
$$> (\rho_0 - \rho)\{rs/(\rho_0 - \rho)\} = rs.$$

Calculating the integrand of (17), we obtain

$$\varphi(\gamma s/(\rho_0 - \rho(s)))^{-1}(\rho_0 - \rho(s))^{-1} \\ \leq 2e(\rho_0 - \rho)(\rho_0 - \rho - \gamma s)^{-2}e^{\gamma s/(\rho_0 - \rho)}.$$

Here we have used the equality: $1-e^{-x}=xe^{-\theta x}$, $0<\theta<1$, with $x=7s/(\rho_0-\rho)$. Hence we have

$$|Hu(t)-Hv(t)|_{
ho} e^{-\gamma t/(
ho_0-
ho)} \leq C \|u-v\|_{
ho} \int_0^t 2e(
ho_0-
ho)(
ho_0-
ho-\gamma s)^{-2} ds$$

$$< 2Ce \|u-v\|_{
ho} (
ho_0-
ho)\gamma^{-1}(
ho_0-
ho-\gamma t)^{-1}.$$

This implies

(20)
$$||Hu-Hv||_r \leq (2Ce/\gamma) ||u-v||_r$$

We choose 7 satisfying

(21)
$$\gamma > \max(4\gamma_0/3, 8Ce).$$

Then we define an approximating sequence $u_n(t)$ and an associated sequence γ_n by

(22)
$$u_0 = F(t, 0), \quad u_{n+1} = Hu_n \quad (n \ge 1),$$

(23)
$$\gamma_n = \gamma(1 - 2^{-1-n}), \text{ i.e. } \gamma - \gamma_n = \gamma 2^{-n-1},$$

Clearly it follows (cf. (10) and (11))

$$||u_{n+1}-u_n||_{r_n} \leq (2Ce/\gamma_n) ||u_n-u_{n-1}||_{r_n},$$

(25)
$$||u_{n+1} - u_n||_{\rho_0, r} \le (1 - \gamma_n / \gamma)^{-1} e ||u_{n+1} - u_n||_{r_n}$$

$$= 2^{n+1} e ||u_{n+1} - u_n||_{r_n} .$$

These imply

(26)
$$||u_{n+1} - u_n||_{\rho_0, \gamma} \leq 2^{n+1} e(2Ce)^n \gamma_n^{-n} ||u_1 - u_0||_{\gamma_n}$$

$$\leq 8/3 e(4Ce/\gamma)^n ||u_1 - u_0||_{\gamma_n}.$$

The assumptions (F.2) and (F.3) imply

$$||u_1-u_0||_{r_1}=||F(\cdot,u_0)-F(\cdot,0)||_{r_1}\leq (2Ce/\gamma_1)||u_0||_{r_1},$$

$$||u_0||_{r_1} \leq ||u_0||_{\rho_0, r_0} \leq R_0.$$

Hence we have

(29)
$$||u_{n+1}-u_n||_{\rho_0,\gamma} \leq 16/9e(4Ce/\gamma)^{n+1}R_0,$$

(30)
$$||u_{n+1}||_{\rho_0,7} \{1 + 4e(4Ce/7)\}R_0.$$

If we choose γ satisfying (21) and

(31)
$$\gamma > 16Ce^2R_0/(R-R_0)$$
,

then we obtain

(32)
$$||u_n||_{u_{n,r}} \leq R, \quad n \geq 0,$$

which shows $u_n \in Y_{\rho_0,\tau}(R)$, i.e. $u_n(t) \in X_{\rho_0-\tau_\tau,\tau}(R)$. Thus Hu_n is well-defined. The estimate (29) also implies that $u_n(t)$ converges in $Y_{\rho_0,\tau}(R)$ and in $X_{\rho_0-\tau_\tau,\tau}(R)$. The limit u(t) is a solution of (1). The uniqueness of the solution in $Y_{\rho,\tau}$ ($\rho \leq \rho_0$) is obtained from (20).

We note that the estimate of γ is given by

(
$$\Gamma$$
.1) $\gamma = \max \{4\gamma_0/3, 8Ce, 16Ce^2R_0/(R-R_0)\}.$

Proof of Theorem 2. We define mappings K and L from $Z_r \cap X_{\rho,\tau}(R)$ into Z_r by

(33)
$$Ku(t) = \int_0^t E(t,s)G(s,u(\cdot))ds, \qquad Lu = Hu + Ku.$$

Then from (G.1)-(G.2) and (E), we have

$$|Ku(t) - Kv(t)|_{\rho} \leq \int_{0}^{t} AB |u(s) - v(s)|_{\rho(s)} \{\rho(s) - (\rho + \beta(t-s))\}^{-1} ds + \int_{0}^{t} ds \int_{0}^{s} AB' |u(r) - v(r)|_{\rho(r)} \{\rho(r) - (\rho + \beta(t-s))\}^{-1} ds$$

We determine $\rho(s)$ by (18). From (9) we have with $\gamma \geq 2\beta e$

(37)
$$\rho(r) - \rho \ge (\rho_0 - \rho) \{ \varphi(\Upsilon r / (\rho_0 - \rho)) - \varphi(\Upsilon t / (\rho_0 - \rho)) \}$$

$$\ge (\rho_0 - \rho) e^{-1} \Upsilon (t - r) / (\rho_0 - \rho) \ge 2\beta(t - r),$$

(38)
$$\rho(r) - (\rho + \beta(t-r)) \ge (1/2) \{ \rho(r) - \rho \}.$$

Thus the same calculations as those from (19) to (20) give

(39)
$$||Ku - Kv||_{\tau} \leq (2Ae/\tau) ||u - v||_{\tau} (B + B'\tau), \quad (\tau \geq \rho_0),$$

$$(40) ||Lu-Lv||_{7} \leq \{2(C+AB+AB'\tau_{0})e/7\} ||u-v||_{7}.$$

We choose τ_0 and γ satisfying

(
$$\Gamma$$
.2) $\gamma \ge \max \{4\gamma_0/3, 8De, 2\beta e, \rho_0/\tau_0, 16De^2R_2/(R-R_2)\}, R_2 = R_0 + AR_1\tau_0 < R, D = C + AB + AB'\tau_0.$

Then, we can complete the proof.

References

- [1] R. Caffisch and O. Orellana: C. P. A. M., 39, 807-838 (1986).
- [2] T. Kano and T. Nishida: J. Math. Kyoto Univ., 19, 335-370 (1979).
- [3] L. Nirenberg: J. Diff. Geometry, 6, 561-576 (1972).
- [4] T. Nishida: ibid., 12, 629-633 (1977).
- [5] L. V. Ovsjannikov: Dokl. Akad. Nauk. SSSR, 200, 1497-1502 (1971).