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1. Statement of the results. In this note we shall show that the fol-
lowing theorems hold.

Theorem 1. If q--1 (mod 8) is a prime power and there exists an
Hadamard matrix of order (q-1)/2, then we can construct an Hadamard
matrix of order 4q.

Theorem 2. If q--5 (mod 8) is a prime power and there exists a skew-
Hadamard matrix of order (q +3)/2, then we can construct an Hadamard
matrix of order 4(q+ 2).

Theorem 3. If q=__l (mod 8) is a prime power and there exists a sym-
metric C-matrix of order (q+3)/2, then we can construct an Hadamard
matrix of order 4(q +2).

The particular cases of Theorems 2, 3 when (q +3)/2 is a prime
power, were given (without proof) as Theorem 9.18 by Kiyasu [2]. In a
private communication, he showed that Theorems 2,3 ca.n be proved by
using KSW array. In this note we prove all these three Theorems by
using an adaptation of generalized quaternion type array and relative
Gauss sums.

We have the following 39, 36 and 8 new orders 4n for ngl0000, of
Hadamard matrices from Theorems 1, 2, and 3 respectively, which are not
found in the list of Geramita and Seberry [1].
(1) New orders obtained from Theorem 1.

n" 233,809,953, 1193, 1889, 2393, 2417, 2441, 2729, 2953, 3209, 3593,
3617, 3881, 4049, 4217, 4721, 4889, 5657, 5849, 6073, 6089, 6113, 6257,
6449, 6473, 6569, 6977, 7177, 7417, 7433, 7753, 7793, 8297, 8369, 8609,
8713, 8761, 9833.

(2) New orders obtained from Theorem 2.
n" 103,127, 151,655,879, 1231, 1951, 1999, 22[}9, 2271, 2559, 2799, 2839,

2959, 3039, 3183, 3583, 3679, 4359, 4735, 4863, 4911, 5079, 5311, 5503,
5815, 5983, 6199, 6639, 7519, 8119, 8223, 8679, 9279, 9631, 9903.

(3) New orders obtained from Theorem 3.
n" 579, 2019, 3043, 4443, 6339, 7419, 8523, 9819.
2. The following notations will be used in this note.

q" a power of a prime p; F=GF(q)" a finite field with q elements
K=GF(qg" an extension of F of degree t2
S/" the relative trace from K to F; " a primitive element of K
A*" the transpose f a matrix A I" the unit matrix of order m
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J the matrix of order m with every element / 1
(R): tensor product of matrices
J(x)=l+x+. .+x-1.

3 From our arguments in [3], we easily obtain the following theorem
which gives special Hadamard matrices of order 4(n+ 1).

Theorem 4. Let
1 --1 -1 -1 1 1 1 1

il i i_l_l i1 --I 1 I --I
1 --I --I --I 1

and N=--LM/2. Note that L, M, N are Hadamard matrices of order 4.
Now

A B C D
B* A* --D* C*

H= --C* D A* -B
D* -C B* A

is a matrix of order 4n if A, B, C, D are the matrices of order n. Moreover
supposd that the component matrices A, B, C, D satisfy the following con-
ditions

(i)

(ii)

(iii)
(iv)

Then

A, B, C, D are normal matrices of order n whose elements are
from {1, 1},
AB--BA, AC= CA, AD DA*, BC= C’B, BD* DB*, CD DC,
A*B--BA*, A*D*=D*A, CB--BC*, B*D=D*B, C*D--DC*,
AA* 3-BB* 3- CC* 3-DD*=4(n3-1)I--4J
Ae=2e, Be=Ce=De=O where e is the column vector of length n
with every element 3-1.

e(R)M*
is an Hadamard matrix of order 4(n+ 1).

If A, B, C,D are circulant matrices, then the matrix H is the right
regular representation matrix of a particular element in a nonassociative
quaternion extension ring over the generalized quaternion ring. So we
may rega.rd the matrix H as an adaptation of generalized quaternion type
array.

4. Let Z be a character of K such that Z($)--G-. where 5q_ is a primi-
tive (q--1) root of unity. We define the number z by

z(S’$’ (mod q+ 1),
\ 2]=q- for m (q +21)

and let
f(x) =_ q--o x (mod xq-- 1).

m(q + 1)/2

Lemma 1. For the polynomial f(x), we have
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(1) f(x) contains every x exactly twice except for x= 1,
(2) f(x)f(x-)=_q+(q-l)Jq_(x)--2J(q_)/.(x) (rood xq---l).

Lemma 1 is derived rom the norm relation o a certain character sum
which is obtained from the additive ormula [3, 4, 5] of the relative Gauss
sum associated with Z.

Lemma 2. Put f(x)----fo(X)+xf(x) (mod xq--l). By replacing x by
x in the polynomials fo(X) and f(x), we define the polynomials

o(X)fo(X)J(q_)/(x) (mod
(x)f(x)--J(q_)/(x) (md

Then all the coecients of o(X) and (x) are from (1, -1} and we have
o(X)o(X-)+(x)(x-)q-2J(q_)/(x) (rood x(q-)/-l).

This Lemma ollows rom Lemma 1.
5. We assume that ql (rood 4) and put n=(q+l)/2. We let i be a

primitive ourth root o unity and denote by the quadratic character f
F. We define the polynomial g(x) by

g(x)=o (S/)ix (mod x- 1).
Since n is odd, we can write g(x) in ollowing form

g(x)--- (S/)x+i =o(S/+)x (mod x 1)
Moreover we define the polynomials

(x)--: +(S/)x (med x- 1),
n-1 n)xmfl(x):=0 +(S/+ (mod x- 1).

Then we have g(x)(x)+i(x) (mdx-l) and a(x) and (x) have the
ollowing properties.

Lemma . For the polynomials (x) and fl(x), we have
( 1 ) (x-)(x), fl(x-)fl(x) (mod xn- 1),
( 2 ) (x)(x-)+fl(x)fl(x-)q (mod x- 1).

6. Sketch of proof of Theorem 1. We define the matrices A and B
by using the polynomials 0(x) and ?(x) in Lemma 2, and let

A= @0(T)+ @I( /, B=
1 --1

q-

where T is the basle eireulant matrix of order (q-1)/2.
Since there exists an Hadamard matrix H0 of order (q-1)/2 by as-

sumption, we define the matrices C and D by

C=
1

@Ho, D C or D C*.

We can verify that the matrices A, B, C and D satisfy the conditions
of heorem 4. herefore we can eonstrue an Hadamard matrix of order
4q.

7. Sketch of proof of Theorem Z. We define the matrices A and B
by using the olynomials (z) and (z) in Lemma 8, and le

A
1

@(T) + @I(q.n, B=
1
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where T is the basic circulant matrix o rder (q+ 1)/2.
Let Q denote a skew-Hadamard matrix of order (q+1)/2, assumed to

exist. We transform Q in a normalized orm

--e S--I(q+l)/
where e is the column vector length (q + 1)/2 with every element + 1.

The matrices C and D are defined by

C= @S+ 1
@I(+)/, D C or D C*.

The matrices A, B, C and D satisfy all the conditions of Theorem 4.
Hence Theorem 2 is proved.

8. Sketch of proof of Theorem 3. Let A, B be the same as in proof
of Theorem 2. Let R be a C-matrix of order (q+3)/2, assumed to exist.
We transform R in the orm

Similarly we define the matrices C and D"

C=
1
@U+

-1
@I(q+)/,D=C or D=C*.

Now we proceed in the same way as in proo o Theorem 2.
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