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16. Apbplications of Spreading Models to an Equivalence of
Summabilities and Growth Rate of Cesdro Means

By Nolio OKADA*) and Takashi ITo**)

(Communicated by Kosaku Yo0SIDA, M. J. A.,, March 12, 1987)

0. Introduction. In this paper, we present two applications of
Brunel-Sucheston spreading models. One application is to estimate, from
above, the growth rate of Cesaro means and the other one is to discuss an
equivalence between regular methods of summability. The complete proofs
of our results and related ones will appear elsewhere.

Throughout this paper, X denotes a Banach space, N denotes the set
of all positive integers, and S, denotes the vector space of finite scalar
sequences with the canonical unit vector basis {e,},.

1. Brunel-Sucheston spreading model. We start by explaining the
concept of the Brunel-Sucheston spreading model. Let {z,}, be a bounded
sequence with no norm Cauchy subsequence in a Banach space X. Suppose

that the limit
lim

m—co

k
Z @i,
i=1
msn1< e <ng

exists for all (a)%, in S,. We shall call such a sequence {z,}, a BS-sequence
(named after Brunel and Sucheston). Then we can define the nonnegative
function ¥ on S, by

W((ai)f=1) = ].im

m—co

k
Z: A%y,
i=1
mEny<e e <ng

It is known that ¥ defines a norm on S, (see [3, p. 296]), hence we shall
write || 235, a;e,]| in place of ¥ ((a,)i.,) for each (a,)f., in S,. Let E be the
completion of [S,, |-[l. We say that [FE, {e,},] is the spreading model of
{®,}.. In [3], Brunel and Sucheston proved that every bounded sequence
in any Banach space with no norm Cauchy subsequence has a subsequence
which is a BS-sequence. Then {z,}, and its spreading model [E, {e,},] have
the following properties (Spreading Model) :

.

(1) ”zeZA: a’i(ezi-x—ezz)lléll‘ezg (g1 — €5 ||
for each finite subsets 4,, 4, of N with A,C A4, and (a,); in S,.
(2) lim f_} 0, | = }kj ae;

méﬁ2~°?'<nk o=t =t

for every vector (a,)f_; in S,.
(3) For any ¢e>0 and k in N there exists an L(e¢, k) in N so that for every
(@)f,in Sy and n, in N (¢1=1,2, - - -, k) with L(e, k) <n, <n,<-- - <my,
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Moreover, if in addition, {x,}, is a weakly null sequence, i.e., weak-lim, .., x,
=0, then we have

(1) “z‘eZA:1 ae, “_S_“lé\;.z a6

for each finite subsets 4,, 4, of N with A,C A, and (a,), in S,.

For proofs of (1) and (1), see [2, p. 360], (2) is obvious and (3) is easily
checked by an e-net argument.

By applying the Brunel-Sucheston spreading model, we get the follow-
ing fundamental result, which is an infinite dimensional version for the
property (3) in (Spreading Model).

Theorem 1. Let {x,}, be a BS-sequence in X and [E, {e,},] be its
spreading model. Assume that {x,}, is & weakly null sequence. Then for

any >0 and integer t=2 one can select a subsequence {x.}, of {x,}, with
the following property :

=

k k
-9 3] | 200, ) sup |z 1< 33 02,
and
k k
2, 0, | <41 4e) | 2 e, +-3(log, k) sup |||

forall k,m, in N (i=1,2, - - -, k) with n,<n,<--- <m0, (@)¢,, @), with |a,]|
<1, 16,|=1 (=12, -, k).

By using Theorem 1, we can get an “alternative” theorem concerning
weakly null sequences.

Theorem 2. For every weakly null sequence {x,}, in X one can extract
a subsequence {x,}, of {x,}, such that either

k
(1) lim sup | L 37aa|=0
Koo m<eee<ng || Jo i=1
lail=1
or
. . 1 &
(2) inf inf =36, >0.
k n1|<0;i=<1nk i=1

2. Growth rate of Cesaro means. In [1], Banach and Saks proved
that L,[0,1] A<p<oo) has the so-called Banach-Saks property by actually
showing the following :

Each weakly null sequence {x,}, in L0, 1] has a subsequence {x,}, which

satisfies
k

2.

=1

_ {O(k”p) if 1<p<£2
p LOE™  if 2=p<oo.

Recall that a Banach space X is of type p with 1<p<2, if there is a
constant M >1 such that for every finite set of vectors {x,}., in X we have
Average Hf 0., | <M (Zk] |, Il”)w.
i=1 i=1

ft==x1
It is known that L,[0, 1] is of type min (2, p) (see [5, p. 73]).
We can show the following theorem which is a natural generalization
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of the result of Banach and Saks. Our method of the proof is completely
different from that of Banach and Saks.
Theorem 3. Let X be a Banach space of type p with 1<p<2 and M
be a type p constant of X. Then for each weakly null sequence {x,}, in X
one can extract a subsequence {x;}, so that
sup

sup Zai || < T8M sup [2c|| kP

for every k,n, in N (i=1, 2 -, k) with n1<n2< - <Ny

Sketch of Proof. Let {xn}n be a weakly null sequence in X. We may
assume that {z,}, has no norm convergent subsequence. By Theorem 1,
{z,}, has a subsequence {z;}, which is a BS-sequence with its spreading
model [E, {e,},] and satisfies
—2(log, k) sup lE4 ||< inf

fi]=1

and
sup || Zai - S5HZ e;||+3(log, k) sup kAl

for each k,n, in N (¢t=1,2, .- -, k) with n,<n,<<...<n,.
By using the first inequality, we have

k k
1 —2(log; k) sup ||z, || < AverageHZ 0,x;
n 6;==x1 =1

54

o

k 1/p
SUONED)
<M sup ||@,[| k",
hence by the second inequality above, we obtainn
Z oz, | <{B(BM k' +10 k'/?)+ 3 k'/?} sup [EAl
T <8 sup e

for all k,n, in N (i=1,2, - . -, k) with n,<n,<...<n,.

3. An equivalence of regular methods of summability. An infinite
matrix (a,,,) is called a regular method of summability (see [4, p. 96]), if
the following conditions hold :

sup
lagls1

(1) SUp 3 |ty ] < o0,
n m=1
(2) lim 3 @, =1,
n—o m=1
(3) lima, =0 (m=1).

n— oo

An interesting method of summability is that of Cesaro’s:
C:=(c,n) with ¢, ,, :=1/n A<m<n) and ¢, ,, :=0 AZw<m).
On the other hand, the most trivial one is the identity summability :
I1:=0,,,) with d, , :=1 (n=m) and §, , :=0 (m#=m).
For a regular method of summability A=(a,,,), a bounded sequence
{z,}, in X is called A-summable to an element x, in X if
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> Q@ — Xy =0.
m=1

Now we introduce a stronger notion of summability as follows. A
bounded sequence {z,}, in X is said to be completely A-summable to x, if
each subsequence of {z,}, is A-summable to x,. In terms of this complete
summability, we define an equivalence relation among regular methods of
summability as follows. For regular methods of summability A and B, A
is said to be stronger than B if the following condition is satisfied :

If a bounded sequence {x,}, in an arbitrary Banach space is completely
A-summable to x,, then there is a subsequence {x,}, of {x,}, such that {x},
is completely B-summable to x,.

We say that A is equivalent to B if A is stronger than B and B is
stronger than A.

With respect to this equivalence, we have the following :

Theorem 4. FEvery regular method of summability A=(a, ) s equi-
valent to either Cesaro summability or the identity summability according
as

lim

N> 00

lim (sup |@, »)=0 or lim sup (sup |a,,.])>0.

This result shows that Cesaro summability is, in a sense, the most
fundamental summability. A part of our proof of the above theorem
depends upon Theorem 2.
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