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In this note and the forthcoming one, we will study asymptotic expan-
sion of the solutions to linear Cuchy problems for a hyperbolic operator
of higher order P=(iDoL+M with a small parameter in n+ 1 dimensional
(t, x)-space, which reduces to an pproprite hyperbolic operator M of
lower order. They have been studied mainly in the case of 2nd order in
two dimensional (t, x)-space (e.g. [3], [4])except for some references (e.g.
[1], [2]).

By using pseudo-differentiM operators, we derive a priori L estimates
with from the separation conditions introduced by G. B. Whitham [7], [8]
and completed by T. T. Wu [9]. They will give the remainder estimates of
the asymptotic expansions of the solutions.

1. Assumptions. Let S be the set of all C functions a(t, x, ; )
in RR R with non-negative parameter in [0, 0] such that for all ], k,

,a has the bounda the derivative
(1) sup (a.(t,x,; ) 0<0, t>0, x e R}<C(I+I[)-where C depends on ], k, a, ft. For homogeneous symbols a(t, x, ), b(t, x,
; D, etc. in the sequel, the expression a >b (uniformly) means that

inf{a(t,x,;D-b(t,x,;D; 0<=<=o, t>O, xeR, I1=1}>0,
and {a, b)>{c, d} means that min {a, b}>max (c, d}. Let Op be the set of
pseudo-differential operators with smooth parameters (t,D associated to
the symbols in S.

Let L(t, x, D,D ) D+=L(t, x, D e)D- where L(t, x, D )
e Op and let M(t,x,D,D ;,)-==oM(t,x,D ;,)D- where M(t,x,D
) e Op, and M0 be a multiplication operator too(t, x D.

We assume the following conditions (H0) and (H1).
(H0) (regular hyperbolicity of L). The operator L has its homogeneous

principal symbol l(t, x, , ;) with the decomposition

( 2 ) l(t, x, r, ) 1 (r--9(t, x, ;))
j=l

where
(3)
(HI)

9:(t, x, )<9.(t, x, ,)<... 9(t, x, ) (uniformly).

(regular hyperbolicity of M). The operator M has its homogeneous

principal symbol re(t, x, , ;,) with the decomposition
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( 4 ) re(t, x, , )=m0(t, x;e) l-[ (r-(t, x, ;))

where
(5) (t,x,;)(t,x,;e).. (t,x, ) (uniformly).

We study Cauchy problems to the operator P =(i)L+M. Gener-
alizing the classification by G. B. Whitham and T. T. Wu [9], we consider
the ollowing cases.

Case 1. Let ,=1. We assume
(E) Re too(t, x;)0 (uniformly)
nd that the characteristic roots {%} nd {} separate each ther such that
(S) %(t, x, )<(t, x, )<(t, x, )<...

<(t, x, s)<+(t, x, s) (uniformly).
Case 2. Let,=1. We assume

(SP) Re too(t, x s)=0 identically and
Im mo(t, x s) >0 (uniformly)

and that {%} is separated wekly by {} such that
(WSP) %(t, x, ) <{%(t, x, ), (t, x, )} <...

<{_,(t, x, ), (t, x, )}
({q(t, x, ), /,(t, x, )} (uniformly).

Alternatively, we assume
(SN) Re mo(t, x )=0 identically and

Im too(t, x )(0 (uniformly)
and
(WSN) {%(t, x, ), %(t, x, )} <{%(t, x, ), (t, x, )}

<{%(t, x, ), %(t, x, )} ...
{(t, x, ), p(t, x, )} p+ (t, x, ;) (uniformly)

Case 3. Let,=2. We assume
(P) too(t, x e)0 (uniformly),
and that {%} is separated weakly by {} such that
(WS) %(t, x, ) <{%(t, x, ), (t, x, )} <...

<{(t, x, ; ), +(t, x, ; )} <+(t, x, ; )
(uniformly).

2. Results. We have the following a priori L estimates for the
operator P in each case mentioned above. We use the norm ][Du(t)]
=0]D[u(t, .)]+_, where . { denotes Sobolev norm of order s in R.
We omit the subscript p when p=0.

Theorem. We assume (H0) and (H1). In each case there exist posi-
tive constants c, C, o such that for any >0 and for u(t)e C([0, T];
C(R)) the following estimates hold respectively. In Case 1, we have

(6) C{I e--,Pu(t),,dt +,Du(O)+D-’u(O),}
c(T I; e-( ,Du(t) ,+7 .,D-’u(t).)dt

Du(T)] + ]D-’u(T)).
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In Case 2, we have

(7) C{-:e-- Pu(t),,dt+ ,Du(0)]]+] D-u(O)ll/}
C {"[ e-2rt(e Du(t) IlZ+ lD.-’u(t)

e-rr( Du(T) II+ ID-u(T) ,,)}+
In Case 3, we have

(8) C(@ I: e-"-z ,Pu(t) ldt+d D+’u(O)1+ IlDu(0)Iz}
{7 .[ e-Zrt(e D+’u(t)1:+ 11D"u(t){{:)dtc

Remark. In Case 1, i mo(t,x;D is moreover real, the estimate is
slightly improved. The proof is bsed on the Ghrding-Leray inequality [5]
extended to pseud-differentiM peratrs

Lemma. We assume (H0) and (H1) for L and M with =1. We
assume moreover
(P) too(t, x )>0 (uniformly)
and (S). Then, there exist positive eonstants e, C, o sueh that for any
r >r0 and for u(t) e C([0, T] C;(R)) such that

( 9 ) -Im .[’ e-"(L(t,., D,, D)u(t), M(t,., D,, D)u(t))dt

cr .[ e-" Dut IIdt+ce- OuT C OuO ,
This is proved by Euclidean algorithm for L and M (R. Sakamoto [6]).
Full details will be published elsewhere.
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