58. On a Problem of R. Brauer on Zeta-Functions of Algebraic Number Fields. II

By Ken-ichi SATO Faculty of Engineering, Nihon University

(Communicated by Shokichi IYANAGA, M. J. A., June 9, 1987)

1. Let K_1 , K_2 be algebraic number fields of finite degrees. Put $K = K_1K_2$, $k = K_1 \cap K_2$ and consider the following quotient of Dedekind zeta-functions:

$$\zeta_{K_1,K_2}(s) = \zeta_K(s) \cdot \zeta_k(s) / \zeta_{K_1}(s) \cdot \zeta_{K_2}(s).$$

It was shown by R. Brauer [1] that $\zeta_{K_1,K_2}(s)$ is an entire function of s, if K_1/k and K_2/k are normal. In our previous note [2], we called R. Brauer's problem the question asking for other cases in which $\zeta_{K_1,K_2}(s)$ becomes entire. We proved that this takes place in the following cases:

- (i) $K_1=Q(\sqrt[p]{a})$, $K_2=Q(\sqrt[p]{b})$, where p is an odd prime and a, b are relatively prime p-free integers $\neq 1$.
- (ii) $K_1 = Q(\sqrt[p]{a})$, $K_2 = Q(\sqrt[q]{b})$ where p, q are distinct odd primes and a, b are relatively prime, respectively p-free and q-free integers $\neq 1$.

In the present note, we shall show that these results can be derived in a generalized form from a theorem on "supersolvable extensions" as stated below. The letters k, K, L, M (sometimes with suffixes) will denote throughout this note algebraic number fields of finite degrees.

2. If K/k is normal and $\operatorname{Gal}(K/k)$ is supersolvable, K/k itself will be called supersolvable. Then there exists a chain of intermediate fields $K=k_{\nu}\supset k_{\nu-1}\supset\cdots\supset k_0=k$ such that all k_i/k are normal and $k_i\supset k_{i-1}$ are cyclic, $i=\nu,\ \nu-1,\ \cdots,\ 1$. It is known that if K/k is supersolvable, the Artin L-function $L(s,\ \chi,\ K/k)$ for every non-principal character χ of Gal (K/k) is entire (cf. [3]).

Theorem. Let $K=K_1K_2$, $k=K_1\cap K_2$. Let M/k, M_1/k be galois closures of K/k, K_1/k respectively. If M/k is supersolvable and $M_1\cap K_2=k$, then $\zeta_{K_1,K_2}(s)$ is entire.

- *Proof.* Put $G = \operatorname{Gal}(M/k)$, $G_1 = \operatorname{Gal}(M_1/k)$, $H_1 = \operatorname{Gal}(M_1/K_1)$. Then we have after Artin $\zeta_{K_1}(s) = L(s, 1_{H_1}, M_1/K_1) = L(s, 1_{H_1}^{G_1}, M_1/k)$, where 1_{H_1} is the principal character of H_1 and $1_{H_1}^{G_1}$ the same character induced to G_1 . Likewise $\zeta_k(s) = L(s, 1_{G_1}, M_1/k)$. Now we can write $1_{H_1}^{G_1} = 1_{G_1} + \sum_i \lambda_i$, where λ_i are nonprincipal irreducible characters of G_1 , so that we obtain
- (1) $\zeta_{K_1}(s)/\zeta_k(s) = \prod_i L(s, \lambda_i, M_1/k) = \prod_i L(s, \tilde{\lambda}_i, M/k)$. Here $\tilde{\lambda}_i$ is the character λ_i lifted to $\operatorname{Gal}(M/k)$. We give the following diagram for the sake of convenience.

Put $M_1'=M_1K=M_1K_2$, then M_1'/K_2 is normal and $Gal(M_1'/K_2)\cong Gal(M_1/k)$ = G_1 so that just as above

$$\begin{aligned} \zeta_{\scriptscriptstyle K}(s)/\zeta_{\scriptscriptstyle K_2}(s) &= \prod\limits_i \ L(s,\,\lambda_i,\,M_1'/K_2) \\ &= \prod\limits_i \ L(s,\,\tilde{\lambda}_i,\,M/K_2) = \prod\limits_i \ L(s,\,\tilde{\lambda}_i^{\scriptscriptstyle G},\,M/k) \end{aligned}$$

where $\tilde{\lambda}_i^G$ is the lifted character $\tilde{\lambda}_i$ induced to G, which can be written in the form $\tilde{\lambda}_i + \sum_j \lambda'_{ij}$, where λ'_{ij} are non-principal irreducible characters of G. Thus dividing (2) by (1), we see that $\zeta_{K_1,K_2}(s)$ is equal to a product of the form $\prod_{i,j} L(s,\lambda'_{ij},M/k)$ which is entire.

3. Now let m, n be any given natural numbers ≥ 2 and $a, b \in \mathbb{Z}$.

Lemma 1. The galois closure K of Q ($\sqrt[m]{a}$, $\sqrt[m]{b}$) over Q is supersolvable.

Proof. Let l be the L. C. M. of m, n, and put $\omega = \exp(2\pi i/l)$, $\mathbf{Q}(\omega) = L_0$, $\mathbf{Q}(\sqrt[m]{a}, \sqrt[n]{b}) = K_0$, $L_0K_0 = L$, $\mathbf{Q} = k$. Then L/k is normal, $L \supset K \supset k$ and K/k is normal. It suffices clearly to show that L/k is supersolvable. Now $L \supset L_0 \supset k$, L/L_0 is Kummerian and L_0/k is cyclotomic. So it is easy to construct a chain of intermediate fields $L = k_{\nu} \supset k_{\nu-1} \supset \cdots \supset k_{\rho} = L_0 \supset k_{\rho-1} \supset \cdots \supset k_0 = k$ such that k_i/k are normal and k_i/k_{i-1} are cyclic, $i = \nu$, $\nu - 1$, \cdots , 1.

For a prime p and $a \in \mathbb{Z}$, $v_p(a)$ denotes as usual the natural number such that $p^{v_p(a)}||a$. If $(m, v_p(a))=1$, p will be called an m-proper prime divisor of a. The product of all m-proper prime divisors of a will be denoted by $(a)_m$. If $(a)_m \neq 1$, the degree of $\mathbb{Q}(\sqrt[m]{a})$ over \mathbb{Q} is m and every m-proper prime divisor is completely ramified in $\mathbb{Q}(\sqrt[m]{a})$. The galois closure of $\mathbb{Q}(\sqrt[m]{a})$ (over \mathbb{Q}) is contained in $\mathbb{Q}(\sqrt[m]{a})$, exp $(2\pi i/m)$). The degree of this latter field divides $m\varphi(m)$, where φ is the Euler function and the only primes that can be ramified in it are divisors of ma. From these facts we obtain;

Lemma 2. Suppose $(a)_m \neq 1$, $(b)_n \neq 1$ and put $K_1 = \mathbf{Q}(\sqrt[m]{a})$, $K_2 = \mathbf{Q}(\sqrt[m]{b})$, $K = K_1K_2$, $k = K_1 \cap K_2$. If (m, n) = 1 or $((a)_m, (b)_n) = 1$, we have $k = \mathbf{Q}$, and if moreover $(ma, (b)_n) = 1$ or $(m\varphi(m), n) = 1$, we have $M_1 \cap K_2 = k$, where M_1/k is the galois closure of K_1/k .

In virtue of these Lemmas our theorem yields the following Corollary from which our previous results (i), (ii) follow immediately.

Corollary. Let $(a)_m \neq 1$, $(b)_n \neq 1$ and (m, n) = 1 or $((a)_m, (b)_n) = 1$. Then $\zeta_{K_1, K_2}(s)$ is entire, if $(ma, (b)_n) = 1$ or $((a)_m, nb) = 1$ or $(m\varphi(m), n) = 1$ or $(m, n\varphi(n)) = 1$.

Acknowledgement. I would like to thank Profs. S. Iyanaga and H. Wada for reading this note in manuscript and giving helpful advice for its improvement.

References

- [1] R. Brauer: A note on zeta-functions of algebraic number fields. Acta Arith., 24, 325-327 (1973).
- [2] K. Sato: On a problem of R. Brauer on zeta-functions of algebraic number fields. Proc. Japan Acad., 61A, 305-307 (1985).
- [3] K. Uchida: On Artin L-functions. Tôhoku Math. J., 27, 75-81 (1975).