3. Propagation of Chaos for the Two Dimensional Navier-Stokes Equation

By Hirofumi Osada
Department of Mathematics, Faculty of Science, Hokkaido University
(Communicated by Kôsaku Yosida, m. J. A., Jan. 13, 1986)

In this paper we establish a rigorous derivation of the two dimensional vorticity equation associated with the Navier-Stokes equation from a many particle system as a propagation of chaos.

It is well known that an incompressible and viscous two dimensional fluid, under the action of an external conservative field is described by the following evolution equations

$$
\begin{equation*}
\nabla_{t} v(t, z)+(u \cdot \nabla) v(t, z)-\nu \Delta v(t, z)=0, \tag{1}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
v(t, z)=\operatorname{curl} u(t, z)=\nabla_{x} u_{2}-\nabla_{y} u_{1} \\
\nabla \cdot u=0, \quad z=(x, y) \in R^{n}
\end{array}\right.
$$

where $u=\left(u_{1}, u_{2}\right) \in R^{2}$ is the velocity field and $\nabla_{x}=\partial / \partial x, \nabla_{y}=\partial / \partial y, \nabla=\left(\nabla_{x}, \nabla_{y}\right)$. $\nu>0$ denotes the viscosity constant. Introducing the operator $\nabla^{\perp}=\left(\nabla_{y},-\nabla_{x}\right)$, by virtue of $\nabla \cdot u=0$, one obtains

$$
\begin{equation*}
u(t, z)=\int_{R^{2}}\left(\nabla^{\perp} G\right)\left(z-z^{\prime}\right) v\left(t, z^{\prime}\right) d z^{\prime}, \tag{3}
\end{equation*}
$$

where $G(z)=-(2 \pi)^{-1} \log |z|$ is the fundamental solution of the Poisson equation. By means of (3), (1) turns to be a closed equation and is nothing but a McKean's type non-linear equation (see H. P. McKean [1]). Hence a probabilistic treatment for the equation (1) is possible. Such an observation for the two dimensional Navier-Stokes equation was made by Marchioro-Pulvirenti in [2]. We shall discuss "a propagation of chaos for the equation (1)".

Let $\left\{Z_{t}\right\}$ denote the McKean process associated with (1);

$$
\begin{equation*}
d Z_{t}=\sigma d B_{t}+E\left[\left(\nabla^{\perp} G\right)\left(Z_{t}-Z_{t}^{\prime}\right) \mid Z_{t}\right], \quad \sigma=\sqrt{2 \pi} \tag{4}
\end{equation*}
$$

where B. is a 2-dimensional Brownian motion and Z^{\prime}. is an independent copy of Z.

The n particle system associated with (1) are described by the following S.D.E.s,

$$
\begin{equation*}
d Z_{t}^{i}=\sigma d B_{t}^{i}+(n-1)^{-1} \sum_{\substack{j \neq i \\ j=1}}^{n}\left(\nabla^{\perp} G\right)\left(Z_{i}^{i}-Z_{t}^{j}\right) d t, \quad 1 \leqq i \leqq n, \tag{5}
\end{equation*}
$$

where ($B_{.}^{1}, \cdots, B_{.}^{n}$) is a $2 n$-dimensional Brownian motion. Since the coefficients of (4) have singularities at $\mathfrak{N}=\bigcup_{i \neq j}\left\{z=\left(z_{1}, \cdots, z_{n}\right) \in R^{n}, z_{i} \neq z_{j}\right\}$, it is not trivial to see that the solution of (4) defines a conservative diffusion process on $R^{2 n}$. However, if it starts out side of \mathfrak{N}, it can be shown that this diffusion process does not hit \Re (see Osada [4]).

Let us introduce a
Definition. If E is a separable metric space, a sequence of symmetric probabilities m_{n} on E^{n} is said to be m-chaotic for a probability m on E, if for f_{1}, \cdots, f_{k}, continuous bounded functions on E,

$$
\lim _{n \rightarrow \infty}\left\langle m_{n}, f_{1} \otimes \cdots \otimes f_{k} \otimes 1 \otimes \cdots \otimes 1\right\rangle=\prod_{i=1}^{k}\left\langle m, f_{i}\right\rangle
$$

holds. In the following $M(E)$ will denote the set of probabilities on E. One can show (see Tanaka [6], Sznitman [5]) that being m-chaotic is equivalent to the convergence in law of $X_{n}=n^{-1} \sum_{i=1}^{n} \delta_{X_{i}}$, (which is an $M(E)$ valued random variable defined on (E^{n}, m_{n}), X_{i} are the canonical coordinates on E^{n}), towards the non-random m.

In the following, \mathcal{C} will denote $C\left([0, \infty) \rightarrow R^{2}\right)$. Let $\left\{Z_{.}^{n}=\left(Z^{1}, \cdots, Z_{.}^{n}\right)\right\}$ (resp. $\{Z$.$\}) be the solution of (5) ((4)) with initial distribution \psi_{n}\left(z_{1}, \cdots, z_{n}\right)$ $d z_{1} \cdots d z_{n}(\psi(z) d z)$ and $P_{n}(P)$ be the probability measure on $\mathcal{C}^{n}(\mathcal{C})$ induced by $\left\{Z^{n}\right\}$ ($\{Z$.$\}). Now we state our main result:$

Theorem. Assume $\psi_{n} d z_{1} \cdots d z_{n}$ is $\psi d z$-chaotic and
(6)

$$
\lim _{n \rightarrow \infty} \sup _{k \geqq n}\left\|\int_{R^{2 k-2 i}} \psi_{n} d z_{i+1} \cdots d z_{k}\right\|_{L^{\infty}\left(R^{2 i}\right)}<\infty \quad(i=1,2,4)
$$

Then there exists a positive constant ν_{0} such that, if $\nu>\nu_{0}$, then P_{n} is P chaotic.

It is convenient to state the theorem in another way. Let $\bar{Z}_{n}=$ $C_{n}^{-1} \sum_{I_{n}} \delta\left(Z^{i_{1}}, \cdots, Z_{.}^{i_{e}}\right)\left(I_{n}=\left\{\left(i_{1}, \cdots, i_{6}\right) ; 1 \leqq i_{k} \leqq n, i_{k} \neq i_{j}\right.\right.$ if $\left.\left.k \neq j\right\}\right)$ and $\bar{P}_{n}=$ $\bar{Z}_{n} \circ P_{n} \in M\left(M\left(\mathcal{C}^{6}\right)\right) . \quad \mathcal{C}_{n}$ denotes the normalized constant. Put $\bar{P}=\delta_{P 6} \in$ $M\left(M\left(\mathcal{C}^{6}\right)\right)$. Then, as we explained above, Theorem is equivalent to

Theorem'. Assume $\left\{\psi_{n} d z_{1} \cdots d z_{n}\right\}$ and ψ satisfy the same conditions of Theorem. Then $\lim _{n \rightarrow \infty} \bar{P}_{n}=\bar{P}$ in $M\left(M\left(\mathcal{C}^{6}\right)\right)$.

Now we proceed to a sketch of the proof.

1. Let us first show the tightness of $\left\{P_{n}\right\}$. Let $c_{i j}(s, x)(i, j=1, \cdots, n)$ be bounded measurable functions. A differential operator

$$
A=\alpha \Delta+\sum_{i, j=1}^{n}\left(\nabla_{i} c_{i j}\right) \nabla_{j}
$$

on R^{n} (α is a constant, $\nabla_{i}=\partial / \partial x_{i}$) is said to be of class $\mathcal{G}(n, \alpha, \beta)$ if

$$
\begin{equation*}
\int_{R^{n}} \sum_{i, j=1}^{n} c_{i j} \nabla_{i} \nabla_{j} f d x=0, \quad \text { for any } f(x) \in C_{0}^{2}\left(R^{n}\right) \tag{7}
\end{equation*}
$$

(8) $\quad\left|c_{i j}\right| \leqq \beta / n$.

We call A is of class $\mathcal{G}_{0}(n, \alpha, \beta)$ if $A \in \mathcal{G}(n, \alpha, \beta)$ and the coefficients are smooth.

Lemma 1. Let $A \in \mathcal{G}_{0}(n, \alpha, \beta)$. Then the fundamental solution $p=$ $p(s, x, t, y)$ of $\nabla_{s}+A$ satisfies

$$
\begin{equation*}
\sum_{i=1}^{n} \int_{R^{n}}\left|x_{i}-y_{i}\right|^{q} p(s, x, t, y) d y \leqq C_{1} n|t-s|^{q / 2} \tag{9}
\end{equation*}
$$

for $0<s<t<\infty$, any $x \in R^{n}$ with a positive constant C_{1} depending only on α, β and q.
(See Osada [3] for the proof.) Let L_{n} be the generator of (5). Then

$$
\begin{equation*}
L_{n} \in \mathcal{G}(2 n, \nu, 2) \tag{10}
\end{equation*}
$$

(See Osada [4] for the proof.) By (9) and (10), we have

$$
\begin{equation*}
\sum_{i=1}^{n} E_{P_{n}}\left(\left|Z_{t}^{i}-Z_{s}^{i}\right|^{4}\right) \leqq C_{2} n|t-s|^{2} \tag{11}
\end{equation*}
$$

where C_{2} is independent of the dimension n. Taking into account of symmetry of ($Z^{1}, \cdots, Z_{.}^{n}$), we can conclude from (11) that $\left\{P_{n}\right\}$ is tight.
2. Next we state the uniqueness result for weak solutions of (1). A family of probability measures $\left\{v_{t}(d z)\right\}(0 \leqq t<\infty)$ on R^{2} is called a weak solution of (1) with initial condition v_{0} if

$$
\begin{gather*}
\int_{0}^{t} \int_{R^{4}}\left|z_{1}-z_{2}\right|^{-1} v_{s}\left(d z_{1}\right) v_{s}\left(d z_{2}\right) d s<\infty \tag{12}\\
\left.\left.\left\langle v_{s}, f(s, \cdot)\right\rangle\right\rangle \begin{array}{l}
s=t \\
s=0 \\
-\int_{0}^{t}
\end{array} v_{s},\left(\nabla_{s}+\nu \Delta\right) f(s, \cdot)\right\rangle d s \tag{13}\\
-\int_{0}^{t} \int_{R^{4}}\left(\nabla^{\perp} G\right)\left(z_{1}-z_{2}\right) \cdot(\nabla f)\left(s, z_{1}\right) v_{s}\left(d z_{1}\right) v_{s}\left(d z_{2}\right) d s=0
\end{gather*}
$$

for all $f(t, z) \in C_{0}^{2}\left([0, \infty) \times R^{2}\right)$.
Proposition 1. Suppose $\left\{v_{t}(d z)\right\}$ is a weak solution of (1) with initial condition $v_{0}(d z)=v(z) d z$ and that $v(z) \in L^{\infty}\left(R^{n}\right)$ and that $v_{t}(d z)$ has a density $v(t, z)$ for a.e. t such that

$$
\begin{equation*}
\int_{0}^{t}\left(\int_{R^{2}} v(s, z)^{2} d z\right)\left(\int_{R^{2}}|v(s, z)|^{3} d z\right) d s<\infty . \tag{14}
\end{equation*}
$$

Then $\left\{v_{t}(d z)\right\}$ is unique.
3. Let \bar{P} be an arbitrary limit point of $\left\{\bar{P}_{n}\right\}$. It can be easily seen that $\bar{P}\left(\left\{m \in M\left(\mathcal{C}^{6}\right) ;{ }^{\exists} \tilde{m} \in M(C), m=\tilde{m} \otimes \cdots \otimes \tilde{m}\right\}\right)=1$.

Proposition 2. For \bar{P} a.e. $m \in M\left(\mathcal{C}^{6}\right), \tilde{m} \in M(\mathcal{C})$ is a weak solution of (1).

To show Proposition 2, we consider a function $H^{+(-)}$on $M\left(\mathcal{C}^{6}\right)$,

$$
\begin{aligned}
H^{+(-)}(m)=\langle & m,\left[\sum_{i=1}^{2}\left\{f\left(t, Z_{t}^{i}\right)-f\left(s, Z_{s}^{i}\right)-\int_{s}^{t}\left(\nabla_{u}+\nu \Delta\right) f\left(u, Z_{u}^{i}\right) d u\right\}\right. \\
& \left.\left.-\int_{s}^{t} h^{+(-)}\left(u, Z_{u}^{1}, Z_{u}^{2}\right) d u\right]\right\rangle
\end{aligned}
$$

where for $f \in C_{0}^{2}\left([0, \infty) \times R^{2}\right), h^{+}\left(\right.$resp. $\left.h^{-}\right)$is a upper (lower) semicontinuous version of

$$
\left(\nabla^{\perp} G\right)\left(z_{1}-z_{2}\right) \cdot\left\{(\nabla f)\left(t, z_{1}\right)-(\nabla f)\left(t, z_{2}\right)\right\} .
$$

It should be noted that H^{+}(resp. H^{-}) is a bounded upper (lower) semicontinuous function on $M\left(\mathcal{C}^{6}\right)$. Hence we have

Lemma 2. For \bar{P} a.e. $m \in M\left(\mathcal{C}^{6}\right)$,

$$
\begin{equation*}
H^{+}(m) \geqq 0 \quad \text { and } \quad H^{-}(m) \leqq 0 \tag{15}
\end{equation*}
$$

By using Ito's formula for $r(z)=|z|$, we have
Lemma 3. There exists a positive constant ν_{0} such that, if $\nu \geqq \nu_{0}$, then

$$
\begin{equation*}
\sup _{n} E_{P_{n}}\left(\int_{0}^{t}\left|Z_{s}^{1}-Z_{s}^{2}\right|^{-1} d s\right)<\infty . \tag{16}
\end{equation*}
$$

By (16) we have, for \bar{P} a.e. m,

$$
\begin{equation*}
\left.\left\langle m, \int_{0}^{t}\right| Z_{s}^{1}-\left.Z_{s}^{2}\right|^{-1} d s\right\rangle<\infty \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
H^{+}(m)=H^{-}(m)=0 . \tag{18}
\end{equation*}
$$

On account of the symmetry of Z^{1} and $Z_{.}^{2}$, (13) follows from (17) and (18), which completes the proof of Proposition 2.
4. The final step is

Proposition 3. There exists a positive constant ν_{0} such that if $\nu \geqq \nu_{0}$, then, for P a.e. $m \in M\left(\mathcal{C}^{6}\right), \tilde{m}$ has a density $m_{t}(z) d z$ for a.e. $t>0$ satisfying (14).

Let $g_{h}(z)=(2 \pi h)^{-3} \exp \left(-|z|^{2} / h\right), z=\left(z_{1}, z_{2}, z_{3}\right) \in R^{6}$. It is not difficult to see that Proposition 3 follows from

Lemma 4.

$$
\begin{equation*}
\sup _{h>0} E_{\bar{P}}\left(\left\langle m, \int_{0}^{t} g_{h}\left(Z_{s}^{1}-Z_{s}^{2}, Z_{s}^{3}-Z_{s}^{4}, Z_{s}^{3}-Z_{s}^{s}\right) d s\right\rangle\right)<\infty . \tag{19}
\end{equation*}
$$

We can reduce (19) to

$$
\begin{equation*}
\varlimsup_{n} \sup _{h>0} E_{P_{n}}\left(\left\langle\int_{0}^{t} g_{h}\left(Z_{s}^{1}-Z_{s}^{2}, Z_{s}^{3}-Z_{s}^{4}, Z_{s}^{3}-Z_{s}^{5}\right) d s\right)<\infty .\right. \tag{20}
\end{equation*}
$$

The key point of the proof of (20) is to show
Lemma 5.

$$
\begin{equation*}
\varlimsup_{n} E_{P_{n}}\left(\int_{0}^{t}\left(\left|Z_{s}^{1}-Z_{s}^{2}\right|^{2}+\left|Z_{s}^{1}-Z_{s}^{3}\right|^{2}+\left|Z_{s}^{4}-Z_{s}^{5}\right|^{2}\right)^{-5 / 2}\left|Z_{s}^{i}-Z_{s}^{6}\right|^{-1} d s\right)<\infty \tag{21}
\end{equation*}
$$

$$
(i=1,2,4)
$$

The details of the proof will be given elsewhere.

References

[1] McKean, H. P.: Propagation of chaos for a class of nonlinear parabolic equation. Lecture series in differential equations. session 7, Catholic Univ. (1967).
[2] Marchioro, C., Pulvirenti, M.: Hydrodynamic in two dimensions and vortex theory. Commun. Math. Phys., 84, 483-503 (1982).
[3] Osada, H.: Diffusion processes associated with generalized divergence forms (to appear).
[4] -: A stochastic differential equations arising from the vortex problem. Proc. Japan Acad., 61A, 333-336 (1985).
[5] Sznitman, A. S.: Equations de type Boltzmann spatialement homogenes (to appear in Z. Wahrsch. Verw. Gebiete.).
[6] Tanaka, H.: Some probabilistic problems in the spatially homogeneous Boltzmann equation (in Proc. IFIP-ISI Conf. on Theory Appl. of Random Fields, Bangalore, Jan., 1982).

